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1. INTRODUCTION

In an earlier article [1] the author has discussed the properties of a set of polynomials
{U,(p,q; x)} defined by
U,(p.4; %) = (x+ P)U,1(P,4; X) = qU, (P, q; X), n22, (1.1)

with Uy(p,q; x) =0 and U;(p,q; x) = 1.

Here and in the sequel the parameters p and g are arbitrary real numbers, and we denote by
a, # the numbers such that a + f= p and aff =q.

The aim of the present paper is to investigate the companion sequence of polynomials

{V.(p.q; x)} defined by
V(p,q,x)=(x+pWV,_.(p,q; %) -9V, 2(p,q; X), n22, (1.2)
with ¥y(p,¢; x) =2 and Vi(p,q; X) = x + p.
The first few terms of the sequence {V/,(p,q; x)} are
Vy(p,q; x) = (P —2q) +2px +x7,
Vi, g, x) = (P’ -3pq) + 3p* —3q)x +3px* + x°,
Vi(0,q, %) = (p* —4p*q +29") +(4P° - 8pq)x +(6p” — 4q)x* +4px’ +x*.

We see by induction that there exists a sequence {d, ,(p,9)},>; of numbers such that
k20

Vn(p’qa x):Zdn,k(p:q)xk’ nZla (13)

k20

with d, ,(p,q)=0if k>n+1landd, ,(p,q)=1if k =n. For the sake of convenience, we define
the sequence {d; ,(p,q)} by

dyo(p,g)=1 and dy ,(p,q)=0ifk>1. (1.4)

Notice that Vy(p,q; x) =2 = 2d, o(p,q).

Special cases of {V,(p,q; x)} which interest us are the Lucas polynomials L, (x) [2], the Pell-
Lucas polynomials Q,(x) [7], the second Fermat polynomial sequence &,(x) [8], and the Cheby-
schev polynomials of the first kind 7,(x) given by

V.(0,-1 x) = L,(x),
Va(0,-1,2x) = 0, (x),
Va(0,2; x) = 6,(x),
V,(0,1;2x) =27, (x).

(1.5)
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Another interesting case is the Morgan-Voyce recurrence ([1], [5], [9], [10]. and [11]) given
by p=2andg=1(ora=f#=1). In the sequel, we shall denote by C,(x)=V,(2,1;x) this new
kind of Morgan-Voyce polynomials, defined by

Co(x)=2, Ci(x)=x+2, and C,(x)=(x+2)C,_;(x)-C,_,(x), n=2. (1.6)
Remark 1.1: One can notice that C,(x*) = L,,(x). Actually, it is well known and readily proven

that the sequence {L,,(x)} satisfies the recurrence relation L,,(x) = (x* +2)L,, ,(x)— L,, 4(x),
where Ly(x) =2 and L,(x) = x* +2. The result follows by this and (1.6).

It is clear that the sequence {V/,(p,q; 0)} is the generalized Lucas sequence defined by
Va4 0= pV, (0,40 =4V, (9,4, 0), n22,
with Vy(p,q; 0) =2 and V(p,q; 0) = p. Therefore, V,(p,q;0) =" + ". By (1.3), notice that

d,.o(p, D)=V, (p.q; 0 ="+ p", fornz1. (1.8)
More generally, our aim is to express the coefficient d, (p,q) as a polynomial in (e, f) and as a
polynomial in (p,q).

2. PRELIMINARIES

In this section we shall gather the results about polynomials {U,(p, p; x)} (1.1) which will be
needed in the sequel. The reader may wish to consult [1].

Define the sequence {c, ;(£,9)} 0 by
k>0

Upi(P: 4 %) = X 6, 1 (2,9, 21

k=0
where ¢, ,(p,q) =0, for k >n. It was shown in [1] that

Foreveryn>2and k> 1,

k(D) = P 1 (2,9 — 462, (D D) + G 11 (P, D) - (2.2)
Foreveryn>0and £ 20,
k+iNk+J]\ ipj
i~ ¥ (M5 )ap 23)
i+j=n-k

If p* = 4q, then @ = B= p/2 and (2.3) becomes
+k+1 .
) =" Yo @4

If p=0, then @ =—f = p, a*= —q, and (2.3) becomes

(2.5)

cn, n—2k(0’ q) = (—l)k(n]:k)qk, n "‘2k > O,
G, n-2-1(0,9) = 0, n-2k-1>0.
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Foreveryn>0and k£ >0,

_ (k)] r(M=r\n=2r\ r n-2r-k
Ge)= 2 0T g (2.6)
r=0
The generating function of the sequence {U,(p,q; x)} is given by
FPg %)= Y Upa(pg O = @7)
=0 1-(x+p)t+qf*

The generating function F,(p,q; f) of the k™ column of coefficients .1 (p,q) is given by
1

Epg)=Y ¢yl = —— . 2.8
(2,95 1) ;} +k, k (1- pt + g2y 2.38)
For every n >0, we have
(/2] 3 o
Upap.2:0)= L (" g 29
r=0

3. THE TRIANGLE OF COEFFICIENTS

One can display the sequence {d, ;(P,q)} s (1.3) in a triangle, thus,
k20

TABLE 3.1

klo 1 2 34
n
0 1 0 0 0 0
1 p 1 0 0 0
2 pF-2q 2p 1 0 0
3 P’ -3pq 3p*-3q 3p 1 0
4 pt—4p*q+2q* 4Ap*-8pg 6p*-4q 4p 1

For instance, the triangle of coefficients of the sequence {C,(x)} (1.6)is

TABLE 3.2

kKl[o 1 2 3 4 56
n

0 1 0 0 0 0 00
1 |2 1 0 0 0 00
2 |2 4 1 0 0 00
3 |2 9 6 1 0 00
4 216 20 8 1 00
5 225 5 3510 10
6 |2 36 105 112 54 12 1
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Theorem 3.1: For every n>0 and £ >0 we have
1 éun,k
k+1 @
Proof: One can suppose that n>1 and it is clear by (1.2) that V,(p,q; x) =V,(0,q; x + p).

From this, we see that V¥ (p,q; x)=V%)(0,q; x+ p), where the superscript in parentheses
denotes the k™ derivative with respect to x. Thus, by Taylor's formula and (1.3),

Vi p.g.0) _V0(0.9,p) G.1)
1 Ko |

Notice that these equalities are valid for every value of p. Now let us differentiate the first and the
last member of (3.1) with respect to p (q being fixed) to get

wn V(k+l) O’ ’
@Sk =1 5{' q p) = (k+1)dn,k+1(p>q)‘

The result can be checked against Table 3.1.

dn, k+1(p’ q) =

dn,k(p)q) =

Remark 3.1: One can get the same result for the coefficient ¢, ,(p,q) (2.1), namely,

&In k
4; =(k+1c, 1u(29).

Comparing the coefficients of x* in the two members of (1.3), we see by (1.2) that, for n>2
and £ >1,

dy 1 (D,9) =y 11D, 9) + PAy 1 (D, 9) — 99,2, +(P> D), (3.2)

which is a relation similar to (2.2). From this, one can obtain another recurrence relation.

Theorem 3.2: For every n>1and k£ >1, we have

n-1

d, (p.9)=pd,_, (p.O+D>.a"'d (P,
i=0

- (3.3)
= n-1, k(p’ q) + Z() :Bn—l_idi, k—l(p: q)

Proof: In fact, (3.3) is clear by direct computation for 7 <2 [recall that d; o(p,q) =1 and
that a+f = p]. Using (3.2), we see that the end of the proof is analogous to the proof of
Theorem 1 in [1].

For instance, in the case of the Morgan-Voyce polynomial C,(x) (1.6) we have a = =1,
and (3.2) becomes (see Table 3.2)

n—1
dn,k(z’ 1) = dn-l,k(zs 1) + Z di, k+1(2’ 1)7
i=0

which is the recursive definition of the DFF and DFFz triangles (see [3], [4], [5]) known to be the
triangle of coefficients of the usual Morgan-Voyce polynomials.
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4. DETERMINATION OF d, ,(p,q) AS APOLYNOMIAL IN (a, )

The determination of d, ,(p,q) will proceed easily from the following lemmas. The first of
these is a well-known result on second-order recurring sequences that can be proven by induction
using (1.1) and (1.2).

Lemma 4.1: For every n>1, we have
V2,4, )=U,0(P, ¢ ¥)~qU, (P, 4; %) (4.1
Lemma 4.2: For every n>0, we have
Vi(p.q,x) =nU,(p,q; X), (4.2)
where the prime represents the first derivative w.r.t. x.

Proof: By (1.1) and (1.2), the result is clear if » =0 or n = 1. Assuming the result is true for
n =1, we obtain by (1.2),

Via(p,q; x) = (x+ pWV,(p,q; X)— qV,_(P,q; ) +V,(P,q; X)
=n(x+p)U,(p.q; ) - qU,(p,q; X)1+V,(p,q; X) +qU,_(p,q; X)
=nU,.(p,q, %) +U,,(p,q;x) by (1.1) and (4.1),
=n+)U,,(p,g; x).

This concludes the proof of Lemma 4.2.
Lemma 4.3: For every n>1and k >1, we have
n
dn,k(p’ q) = ;cn—l, w12, 9). (4.3)

Proof: Comparing the coefficients of x*7! in the two members of (4.2) we see by (1.3) and
(2.1) that
kdn,k(p’ q) = ncn—l, k—l(p’q): nz la k> L.

Lemma 4.3 and (2.3) yield

Theorem 4.1: For every n>1and k > 1, we have
k+i-1 =1\ ipg
(e by 2 (44)

Remark 4.1: Recall from (1.8) that d, ,(p,q) = @" + " (for n>0), an expression which can be
compared with (4.4).

dn,k(p’q) :% Z

i+j=n—k

Let us examine two particular cases.
(i) Firstly, supposing that p* =4q (or « = f=p/2), then by (2.4) we see that equation
(4.3) becomes
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d, (p.9)= (”22" 11)( 12y* 1 k>,

_ niT (n+k)( J2y*.

Notice that this last expression is again valid if £ = 0, since d, ,(p,q)=a" +B"=2(p/2)".
also see that d, (p,q) = n*(p/2)"" (see Table 3.2, where p = 2). For instance, the decomp051-
tion of the polynom1a1 C,(x) (1.6) is given by

Cn(x):2+z%(n+kﬂl)xk, forn>1,
k=1

(4.5)

2k-1

_ én+k(n+k)

(i) Secondly, supposing that p = 0, we have a =—f, ¢=—-a?, and by (2.5) we see that
equation (4.3) becomes, for n>1,
(n 1- k)
q

=Lk(—1)"(”;k)q", forn—2k >1.

dn, n—2k(0’ q) =
(4.6)

Notice that the last member is again defined for n—2k = 0 (k > 1) with value 2(-1)*¢*. Now, by
Remark 4.1, we get that
dyy o(0,q) = & + f* = 2(-1)* ¢, fork > 1.

We deduce from these remarks that (4.6) is again true if n=2%& (kK >1). On the other hand, we
see by (2.5) that equation (4.3) becomes

d, ,21(0,9)=0, forn-2k-1>1. 4.7
Now by Remark 4.1 we have
1,00, 9) = M+ g =0, fork >0,

We deduce from these remarks that (4.7) is again true if n—2k—1=0 (k > 0). Now, by (1.3),

V,00,q;x)= kZd,, £(0,9)x" = Zdn w0, )x"
0

[n/2]

= Zdn, n—2k(0J q)xn_zk'
k=0
Thus, by (4.6) and (4.7) we get
[n/2] B
V,(0,q;x)= Z( 1) nkk)qu”_”‘, forn>1. (4.8)

If p=0 and g = -1, we obtain the known decomposition of Lucas polynomials Z,(x) and of Pell-
Lucas polynomials Q,(x) = L,(2x) (see [7]), namely,
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(/2]

_ n l’l—k n-2k
L"(x)_,;n—k( k )x , forn>1.

The reader can also obtain similar formulas for the Chebyschev polynomials of the first kind
(p=0,q=1), and for the second Fermat polynomial sequence (p =0, ¢ = 2).

5. DETERMINATION OF d,, ,(p,q) AS A POLYNOMIAL IN (p, ¢)

Theorem 5.1: For every n>1and £ >0, we have

[(n E)/2] n (n-r\n-2r
d — _y = r n—2r—k. 51
D= 3 ( y A e 5.1)
Proof: By (3.1) we know that
7482 0,q;
4, (p0) =),

and by (4.8) one can express the right member as

A on (n-r\,(=2r)=2r—k+1) g
> (=D (nr”)q( ) ( )p 2k

r=0 n-r k'
[(n-ky/2] r B (n—r\Xn-2r\ r n-ar-k
= 'go (* 1) ""n — ( % )( k ) q p .

This completes the proof of Theorem 5.1.

Remark 5.1: If k=0, we get by (1.8) the known Waring formula, namely,
(/2]

= S S ey ey, fornz

6. GENERATING FUNCTIONS

Define the generating function of the sequence {V,(p,q; x)} by
8(p. ¢, %0 =Vy(p,4;¥)/ 2+ 2V, (p.g; )", ChY
n1
For brevity, we put g(p,q; x,1) = g(x, ) and V,(p,q; x) =V,(x). By (6.1) and (1.2) we get, since
Vo(x)=2 and Vi(x) =x+p,
80x, ) =1+ (xt p)t+ (2 PV, (™ =g 3V, o ()™
n22 n22
=1+ (x+ p)t +(x + p)fg(x, ) -1~ g’ [g(x, ) +1],
and from this we deduce easily that
1-gf?

1-(c+p)t+qt* ©2)

glx, 1y =
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Let us define now the generating function of the 4™ column of the triangle d, ,(p, ) in Table 3.1
by
G(p,q; D)= zdn+k,k(p, ', k=0. (63)

n20

From (6.2), one can obtain a closed expression for the function G,, namely,

Theorem 6.1: For every k >0, we have

1-gt*

— 6.4

(- pt +qt*)"! ¢4
Proof: For brevity, we omit parameters p and g in expressions for g(p,q; x,1), V,(p,q; x),

d, .(p,q), and G(p,q;1). If k=0, we have by (6.3), (1.3), and (1.4)

Gy(t)=Y.d, " =1+ DV, (0)t"
n20 n21

t2

1._.q
=g(0,1)=—————, by (6.2).
0.0 =1 5y (62)

G.(p.q, 1) =

Assuming now that £ >1, (6.1) and (6.2) yield

klt*(1-qr?) '

= x, 1 V® )" V® (xe)mt*
(1—‘(x+p)t+qt2)k+l ﬁxk g( ) nzl ( ) r;) n+k( ) >
since V,(x) is a polynomial of degree n.

Put x =0 in the last formula and recall that d,,; , = "*" A0 by (1.3) and Taylor's formula, to
obtain

___l__gﬁ__ z " =G,(2).
(1-pt+qly+t el

Hence, the theorem.

Formulas (6.2) and (6.4) can be compared with (2.7) and (2.8).

7. RISING DIAGONAL FUNCTIONS
Define the rising diagonal functions IT,(p,q; x) of the sequence {d, ,(p, q)} by

[n/2]

IL(p,4; %)= Y dpy 1 (0, Px* = Z k(D xX*, n2 1 (7.1
k=0
From Table 3.1, notice that

I (x) = p, TL(x) = (p* ~29) +x, and TI,(x) = (p* -3pq) +2px, (7.2)
where, for brevity, we put IT, (x) for IT,(p,q; x).

Theorem 7.1: For every n>3, we have

IT,(x) = pIL,(x) +(x = I1, ,(x). (7.3)
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Proof: By (7.2), the statement holds for » =3. Supposing the result is true for n>3, we get

by (7.1),
[(n+1)/2]

IT, (X)) =d,y 0+ Z nl-k, kx

Recall from (1.2) and (1.8) that d,,;  =V,,,,1(0) = pd, y—qd,_; ; and notice that n+1-k >n+1-
[(n+1)/2]>2, since n>3. By these remarks and (3. 2) one can see that

[(n+1)/2]

M,,(x)=pd, ¢—qd,1 0+ Z @yt f1 TPy — 94, —l—k,k)xk

k=1
[(n+1)/2] [(n+1)/2] [(n+1)/2]~1

=p Z a’_k,kxk~q Z d, X +x d_l_k,kxk

n n-1- n
k=0 k=0 k=0

= pIL(x) +(x~IL,_,(x),
since [(n+1)/2]-1=[(n—1)/2]. Hence, the theorem.

Corollary 7.1: For every n>1, we have
IL(p.g; %) = Ups(P,q = %;0)—q U, 1(p,q — X, 0). (74)
Proof: By (1.1) the sequence {U,(p,q —x; 0)} satisfies the recurrence (7.3) with

UO(paq_x; O)ZOa Ul(p:q_x; 0):1’ UZ(p’q_x; O)ZP, U3(P,q“x; 0): (pz_q)+x'

From this and (7.2), it is readily verified that (7.4) holds for » = 1 and n = 2, and the conclusion
* follows since the two members of (7.4) satisfy recurrence (7.3).

Corollary 7.2: For every n>1, we have

I, (x) = (n [n[7 /]2]) A - )"+ (nimp" PV (x-q) K )pz ‘(nﬁf _r)q]'

r=0
Proof: From (2.9), we get that

Up(p,q -, 0) = [:‘/:2]( o ar v,

and the result follows by this and Corollary 7.1.

Let us examine two particular cases.
(i) Ifx=gq, then by (7.1)

[n/2]
L,(2.4:9) = Y. 4 (P, Dd" =P (P* - ), forn=2.
k=0

For instance, if p = 2 and ¢ = 1 [Morgan-Voyce polynomial C,(x) (1.6)], we get

[n/2]
Za’_k (2, 1)=3-2"% n>2.

1995] 349



ANOTE ON A GENERAL CLASS OF POLYNOMIALS, PART II

(if) Ifp =0, then
IL,,,(0,4; ¥) = ) dy g 1 (0, X" = (x— )" '(x - 29), form=1.
k=0

For instance, if p = 0 and g =1 (Chebyschev polynomials of the first kind), or if p = 0 and ¢ = 2
(second Fermat polynomials), this identity, with slightly different notations, was noticed by
Horadam [8].

8. ORTHOGONALITY OF THE SEQUENCE {V,(p,q; x)}

In this section we shall suppose that ¢ > 0. Consider the sequence {,(p,q; x)} defined by

" x+p
W(p.q;%)=29""T, , (8.1)
) 2q
where 7 (x) is the n™ Chebyschev polynomial of the first kind. Notice that
Wo(p, q; x) =2,
{ o(p, 4; ) ®2)
M(p,q;x)=x+p.

The recurrence relation of Chebyschev polynomials yields, for n>2,

. _ A nl X+p ﬁ_ll B u
e g2 5]
= (x+p)[2q<"“>”1;-1(3‘2—37fﬂ—q[zq“‘””zz,_{-’;—j/—fﬂ 83)

=+ W, (P, 4; %)~ g W, 5 (P.q; x).
From (8.2) and (8.3), we get that
W.(p,q; %) =V,(p,q; x), forn=0. (8.4)

Recalling that the sequence {7,(x)} is orthogonal over [-1,+1] with respect to the weight
(1-x*)™"2, we deduce from this that the sequence {V,(p,q; x)} is orthogonal over [-p —2./g,
~p+2.Jq] with respect to the weight w(x) = (~x? —2px — A)V2, where A = p>—4q. The proof
is similar to that in [1], Section 7.

-If @ =cost (0<t< ), itis well known that 7 (w) = cosnt. Thus, by (8.1) and (8.4) we have

V.(p.q,-p+ 260\/5) =2q"*T (w) = 2q""* cosnt .

Hence, we see that the roots of V,(p,q; x) are given by

X, = —p+2‘/?q_co{g—k—;—l—)—”—), n>l, k=0,.. (n-1).
n
For instance, the roots of the Morgan-Voyce polynomial C,(x) (1.6) are

x, =-2+2co @k+Dz =—4sin? @k +Dm L k=0,... (n-1).
k 2n

4n
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By Remark 1.1 we know that C,(x*) = L, (x). Thus, the roots of L,,(x) are given by (see [6])
x; = i2isin((—2k7+1—)z), k=0,.., (n-1),
n

where i =+/~1. On the other hand, the roots of the second Fermat polynomial 8,(x) =V,(0,2; x)
are

X, =2x/—2—co{£ké—;1£), k=0,..,(n-1).

9. CONCLUDING REMARK

In a future paper we shall investigate the differential properties of the sequences {U,(p,q; x)}
and {V,(p,q; %)}
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