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1. INTRODUCTION 

Let us consider the generalized Fibonacci polynomials Un(p,q; x) and the generalized Lucas 
polynomials Vn(p,q\ x) (or simply U„ and Vn if there is no danger of confusion) defined by 

U^Qc + pW^-qU^ (C70 = 0 , ^ = 1), (1.1) 
and 

V„ = (x + p)V^-qVn_2 (K0 = 2,K1 = x + p). (1.2) 

The parameters/? and q as well as the variable x are arbitrary real numbers and we denote by 
a = a(x) and /? = J3(x) the numbers such that a + fl = x + p and afi-q. The polynomials Un 

and Vn can be expressed by means of the Binet forms 

an -Bn 
Un=^Jir-> forA*0, (1.3) 

and 

where 

Recall that 

Vn = an+fi\ (1.4) 

A = A(x) = (x + pf-4q. (1.5) 

a = ((x + p) + A1/2)/2, f] = ((x + p)-Al/2)/2. (1.6) 

Notice that A > 0 for every xif q <0 for all x sufficiently large if q > 0. 
Particular cases of Un(p,q;x) and Vn(p,q;x) are the Fibonacci and Lucas polynomials 

(F„(x) and Ln(x)), the Pell and Pell-Lucas polynomials [6] (Pn(x) and <2„(x)), the first and the 
second Fermat polynomials [7] (On(x) and @„(x)), the Morgan-Voyce polynomials [1, 2, 5, 8, 9, 
10] (5„(x) and C„(x)), and the Chebyschev polynomials (S„(x) and 7^(x)) given by 

Un(09 -1; x) = F„(x), F„(0, - 1 ; x) = I„(x) 
C/„(0-1; 2x) = Pn(x), Fw(0,-1; 2x) - &(x) 
£/„(0,2; x) = <D„(x), Fw(0,2; x) = 0„(x) (1.7) 
Un+l(2,l;x) = Bn(xl Kn(2,l;x) = Cll(x) 
C/„(0,1; 2x) - Sw(x), Fw(0,1; 2x) = 27„(x). 

In earlier papers [1, 2] the author has discussed the combinatorial properties of the coeffi-
cients of Un and Vn. Here, we shall investigate the differential properties satisfied by these poly-
nomials, such as differential equations and Rodrigues' formulas. 
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Let us define the sequence {c„tk}n>k>0 by 

:(2») 
c«,o = 2 -£ r r , »>0 , (1.8) 

and 

c , = 2 
{2n)\n + k (n-k)\ 

^ = ^ - ^ £ ± £ 1 , n*k*l. (1.9) 
Notice that 

Cn,k+i=(P2-k2Kk, n>k + l>\. (1.10) 

Our main results are the following theorems. 

Theorem 1: For every real number x, the polynomial 

7 7 < * - l ) - . * 77 £ > 1 
" ~dxk~l "' ' 

and the polynomial 
y(k)=ay k>0 

n dxk "' ' 

satisfy the differential equation Eny. 

Az" + (2k + l)(x + p)z' + (k2-n2)z = 0. (1.11) 

Theorem 2: For every x such that A > 0, we have 

U„=nc0A-m4^A"-m, n>\, (1.12) 
and 

A!/2 " AW-1/2 r ^ ^ o A - ^ A " — , « > 0 , (1.13) 

where cw 0 is defined by (1.8). 

More generally, we also have Rodrigues' formulas for U^k) and V^k\ namely, 

Theorem 3: For every x such that A > 0 and every k > 0, we have 
/ 2 ; 2 \ rn-k-1 

« "•* dx"-k-1 

and 

(1.14) 

F « = c w , , A - ^ / 2 ^ A " - 1 / 2 , n>k, (1.15) 

where cw ̂  is defined by (1.9). 
Notice that Theorem 3 reduces to Theorem 2 for k = 0 and that (1.14) can be written, by 

(1.10), 

^ = ^ A - * - 1 / 2 ^ ^ A " - 1 / 2 , n>k. (1.16) 
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2. PROOF OF THEOREM 1 

It is readily proven [3, 4] by (1.5) and (1.6) that, for every x such that A > 0, 

\a' = aA-in, 

V—^'\ (21) 
and thus that 

\(an)' = na"A-1'2, 
\ (2.2) 
[(£")'= -n{]"A-in. 

By this, (1.3), and (1.4), we see [3, 4] that 
K = nU„ (2.3) 

and therefore that 
V^k)^nU{k~l\ k>\. (2.4) 

Notice that these identities are valid for every value of x, and not only when A > 0, since the two 
members are polynomials. By (2.2), we also deduce that an and /5n, whence Vn = a" +/3" satis-
fies the differential equation 

— (Amy) = n2A-my, forA>0, (2.5) 
dx 

which is equivalent, for A > 0, to the equation £„ 0 [see (1.11)], namely, 

Ay" + (x + p)y' -n2y = 0. (2.6) 

Notice that Vn satisfies En0 for every value of x, since, in that case, the first member of (2.6) is a 
polynomial. 

Differentiating (2.6) k times and using Leibniz' rule, we see that z - y^ satisfies the differ-
ential equation En%k (1.11). Hence, En%k is satisfied by V<k\k>0, and U{k~l) = ̂ k \ k>\. 
This concludes the proof. 

For instance, the Morgan-Voyce polynomial Bn{x)-Un+l{2Xx) satisfies the differential 
equation £n+1 x 

x(x + 4)z" + 3(x + 2)zf-n(n + 2)z = 0. 

This result was first noticed by Swamy [10]. 

Remark: When A > 0, it is easy to verify that E„tk can be written as 

—lAk+mz>] = (n2 - k2)Ak~V2z, (2.7) 
dx 

which is a generalization of (2.5). 

We now give another (nonpolynomial) solution of En^k. 

Proposition 1: Let n and k be two integers such that n + k-l>0. Then, for A > 0, the function 
^ £ r A""1/2 is a solution of E„tk. 
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Proof: It is easy to verify that, for A > 0, A" 1/2 is a solution of the differential equation 
Ay" - {2n - 3)(x + p)y - {2n -\)y = 0. (2.8) 

Differentiating (2.8) {n + k-1) times and putting z = y^n+k~~1\ we obtain 

Az" + 2(" + i~l\x + p)z' + 2(n + *~l\z-{2n-3)\ \{x + p)z'+\^ l J 

After some rearrangement, one can see that this equation is identical to En k. 

Remark: Using the formulation (2.7) of En k and putting z 

-{2n-l)z = 0. 

= ,n+k_, A , one can write 
dx" K l 

d_ 
dx 

jn+k 

tffr ,n+Jc 

jn+k-l 
J2 ir2\kk-\l2 « = (rf-k2)A* A/l-l/2 

^&j .w+fc-1 ' (2.9) 

Changing A to (-£ -1) in (2.9), where n-k>2,we obtain a formula that we shall need later: 

d_ 
dx 

K-k-M2 
jn-k-\ 

A/f-1/2 

£ # ,n-k-l ' = {n2-{k + l)2)A 2\A-k-3/2 
jn-k-2 

AH-1/2 

dx1 n-k-2 

In particular, changing n to (« +1), and putting £ = - 1 , we get 

_d_ 
dx 

i l /2 
7«+l 

AW+1/2 

A w+1 
rf" = {n + \YA-i,z^~An+i,\ n>0. 
dx 

(2.10) 

(2.11) 

3. PROOF OF THEOREM 2 

In the proof of Theorem 2, we shall need the following well-known and readily proven result: 

(3.1) V^=\[(x+p)Vn + MJn\ 

By (1.8), formula (1.12) (resp. (1.13)) is clear if n = 1 (resp. n = 0 or » = 1). Supposing that 
(1.12) and (1.13) are true for n> 1, we get by (3.1) that 

K+i = 
n\ _Al/2 

(2/i!) 
(* + ̂ A « - - + „ ^ > - -

aSe" dx" 

On the other hand, one can notice by (1.5) that 

U Kn-\I1 • a 

dx" dx 

= (2#i + l)| {x+p)^-An-i,l+n-^^A V F) dx" dxn~l 
n-l/2 

From (3.2) and (3.3), we see that 

"n+l ~ 
n\ Ai/2 1 d •w+l 

AW+1/2 

(2w!) 2n+\dx' ,«+l = 2 \ l /2 (/i + l)! 
(2«- f2) ! " ^ 

//7+1 
A»+l/2 

,«+l 

which is the needed formula for K w+l-

(3.2) 

(3.3) 

(3.4) 
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Now we see, by (2.3) and (3.4), that 

Un+l - , , , Vn+l ~ Z 

#i + l ^ (2n + 2)\ dx 
\l/2 a AW+1/2 

*# .w+1 

= 2 ( ^ ( W + 1)2A_1/2SA"+1/2' by(2-U)' (3'5) 
V ; (2« + 2)! A" 

This completes the proof of Theorem 2. 

4. PROOF OF THEOREM 3 

We proceed by induction on k. By Theorem 2, statement (1.14) clearly holds for k - 0 and 
every n>\. Supposing that (1.14) holds for k >0 and every n>k + l we get, by (1.16), 

Uf+1) =£_!&)=: 
jn-k-1 

/y-k-l/2 _^ A«-1/2 
n-k-l A dx n dx\ dx' 

and, by (2.10), we have at once that 

which is the needed formula for £/^+1). 
On the other hand, statement (1.15) holds for k - 0, by Theorem 2. When & > 1 we get, by 

(2.4) and (1.14) that 

V& = nUtl) = c^A~*+1/2 ̂  A""1/2, n>k. 

This completes the proof of Theorem 3. 
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