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Let g be a positive integer greater than 1. An integer x is an ordered 4-digit base g number 
if 

x = ax- g3 + a2 • g2 + a3 • g + a4 -axa2 a3a4 baseg-
with 

g > ax > a2 > a3 > a4 > 0. 

The following procedure, when applied to x, yields another ordered 4-digit base g number. 
Switch the first two digits of x with the last two digits; then subtract the "switched" number from 
x: 

ax a2 a3 a4 - a3 a4 ax a2 - hx b2 b3 b4 base g. 

Finally, rearrange the digits so that the result, R(x), is an ordered number. Thus, 
R(x) = a{ a2 a3 a4 base g, 

where the o/'s are a permutation of the Z>/s and a\>a2 >a3>a4. This procedure is called the 
Switch, Subtract, Reorder (SSR) routine. 

As an example of the SSR routine, consider the base 15 number x = 13 12 10 8. We switch 
the digits of x and subtract: 

13 12 10 8-10 8 13 12 = 3 3 11 l l b a s e l 5 . 

When we reorder, we get R(x) = 11113 3. 
Returning to the general case, we can apply the SSR routine to the number R(x) to get 

R(R(x)) = R2(x). More generally, Ri+1(x) = R(R\x)) for /> 1. Since there are only finitely 
many ordered 4-digit base g numbers, repetition must occur. That is,RJ(x) = i?'(x) for some / 
and/ 

Continuing to use base 15 as an example, we will find the iterates ofx = 13 12 10 8. For 
reasons which will become clear shortly, for each ordered number axa2a3a4, we will also 
calculate the difference diff -a2-a4. The results are given in the following table: 

TABLE 1 

/ 

1 
' 2 
! 3 

4 
5 
6 

R\x) 
11 11 3 3 
8 7 7 6 

14 13 1 0 
13 12 2 1 
11 10 4 3 
8 7 7 6 

diff 
8 
1 

13 
11 , 
7 j 
1 
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Notice that R2(x) = R6(x). We write (R2(x\ R\x), R4(x\ R5(x)) and call this expression a cycle 
of length 4. We say that R2(x) generates the cycle. Of course, R3(x),R4(x), and R5(x) also 
generate the cycle. 

As the example above illustrates, for a given g the SSR routine always gives rise to at least 
one cycle. We will characterize the cycles by answering the following questions: How many are 
there? What number(s) is(are) in each cycle? What is the length of each cycle? What is the 
smallest i such that, for all x, R!(x) is in a cycle? 

The SSR routine is a variation of the Kaprekar routine. For the Kaprekar routine, we reverse 
the digits of x and subtract: 

ax a2 a3 a4 - a4 a3 a2 ax - bx h2 h3 b4 base g. 

Reordering the digits gives K(x). The Kaprekar routine has been studied extensively (see [1]-
[8]). Among the questions addressed are those that appear at the end of the previous paragraph. 

A REDUCTION OF THE PROBLEM 

For an ordered number x = ax a2 a3 a4, the digit differences of x are D = ax-a3 and d-a2-
a4. Clearly, 0<D, d<g. Now, if R(x) -a[a2 a3a4, then the digit differences of R(x) are 
D' = a[ - a3 and d' = a2 - a4. As a matter of terminology, if it should happen that D-d, then we 
will refer to this number as the digit difference of x. That is, we will use the singular form of the 
noun. 

The reader may wonder why we would want to look at digit differences. In part, we do so 
because similar digit differences play an important role in the Kaprekar routine analysis. More 
importantly, for a given x, R(x) is completely determined by D and d. Moreover, as we now 
show, D' -df. Thus, after one application of the SSR routine, the digit differences are equal. 
This observation will greatly simplify the problem of characterizing the SSR cycles. 

Theorem 1: Let x = ax a2 a3 a4 be an ordered 4-digit base g number with digit differences D and 
d. Denote the digit differences of R(x) by D' = d'. Then 

D' = d' = 0 XD = d = 0, 
D' = df = g-D \fO<D<(g + l)/2& d = 07 

D' = d' = D-l if (g + l)/2<D& d = 0, 
Df = df = \g-D~d\ ifO<D<(g-l)/2& 0<^<(^ + l)/2 

or(g-l)/2<D& (g + l)/2<d, 
Df = df = \D-d + l\ ifO<D<(g-l)/2& {g + \)ll<d 

or(g-l)/2<D& 0<d<(g + l)/2. 

Proof: We consider three cases. 
Case 1. Suppose D = 0 and d = 0. Then all the digits of x are equal. In that case, R(x) = 0 

and£>' = rf' = 0. 
Case 2, Suppose D * 0 and d = 0. Since d-Q,a2-a3-a4. We begin by switching and 

subtracting: 
ax a3 a3 a3 

- a3 a3 ax a3 (1) 
D-\ g-\ g-D 0 
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To find R(x), we reorder the digits in (1). There are two possibilities: 
g-l g-D D-l 0 
g-l D-l g-D 0 

The first occurs when 0 <D < (g +1)/2; in that case, D' -d' - g-D. The second occurs when 
(g+l)/2<D;thenD' = d' = D-l. 

Case 3. Suppose d # 0. We switch and subtract: 
ax a2 a3 a4 

-<h a4 a\ a7 (2) 
D d-l g-D-l g-d 

To find R(x), we reorder the digits in (2). Now D>d-l iff g-d>g-D-l; also, D>g-d 
iffd-l> g-D-l. Thus, R(x) equals one of the following eight ordered numbers: 

g-d 
g-D-l 
D 
d-l 
d-l 
g-D-l 
D 
g-d 

g-D-l 
g-d 
d-l 
D 
g-D-l 
d-l 
g-d 
D 

D 
d-l 
g-d 
g-D-l 
D 
g-d 
d-l 
g-D-l 

d-l 
D 
g-D-
g-d 
g-d 
D 
g-D-
d-l 

-I 

-I 

R(x) equals one of the first four numbers when 
0<D<(g-l)/2& 0<d<(g + l)/2 

or 
(g-l)/2<D& (g+l)l2<d. 

For these numbers, D' = d' = \g-D-d\. On the other hand, R(x) equals one of the last four 
numbers when 

0<D<(g-l)/2& (g + l)/2<d 
or 

(g-l)/2<D& 0<d<(g + l)/2. 
For these numbers, D'= d'= \D-d + l\. D 

As stated above, we refer to df as the digit difference of R(x). We now derive several corol-
laries. Since the first two follow immediately from the proof of Theorem 1, their proofs are 
omitted. 

Corollary 1: Let x and y be ordered 4-digit base g numbers with digit differences Dx, dx and 
Dy, dy, respectively. If Dx - Dy and dx = dy, then R(x) - R(y). 

Corollary 2: Let x be an ordered 4-digit base g number with equal digit differences; that is, 
D = d. Then 

R(x) = 0 0 0 0 ifrf = 0, 
R(x) = g-d g-d-l d d-l if0<d<g/2, 
R(x) = g/2 g/2 g/2-l g/2-l ifd = g/2, 
R(x) = d d-l g-d g-d-l ifg/2<d. 
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Corollary 3: Let x be an ordered 4-digit base g number with equal digit differences; that is, 
D = d. Denote the digit difference of R(x) by dr. Then d' = 0 if and only if d = 0. Moreover, if 
<i^0,then 

d' = \g-2d\ i£d*g/29 
d' = l ifd = g/2. 

Proof: We use Corollary 2 to find R(x). The result follows immediately by computing the 
digit difference of R(x) in each case. D 

Corollary 4: Let x be an ordered 4-digit base g number. If R\x) = 0 for some / > 1, then 
R\x) = 0. 

Proof: Let df be the digit difference of R(x). Since R!(x) = 0, its digit difference is 0. 
Applying Corollary 3, repeatedly if necessary, gives d' - 0. By Corollary 2, R2(x) = 0. D 

Since i?(0) = 0, there is always one SSR cycle which contains the single number 0. We will 
call this the zero cycle and denote it by (0). By Corollary 4, we know that if x leads to the zero 
cycle, it will do so in two or fewer steps. Corollary 3 tells us that there are other numbers which 
do not lead to the zero cycle. Consequently, the SSR routine always has at least one nonzero 
cycle. 

A RELATED FUNCTION 

Suppose x generates a nonzero SSR cycle of length m. Since Rm(x) = x, the digit differences 
of x are equal and nonzero. Moreover, by Corollary 3, if the digit difference of x is d * g / 2 , then 
the digit difference of R(x) is \g~ 2d\. This observation leads us to consider \g-2d\. 

The function F(d) = \g-2d\, 0<d<g, was studied by this author in another context [9]. 
Since 0 < F(d) < g, iteration of F gives rise to one or more cycles. As we will see, the cycles of 
F are in a one-to-one correspondence with the nonzero SSR cycles so long as the former do not 
contain 0, g/2, or g. 

Before continuing, we.consider an example. Earlier we applied the SSR routine to the base 
15 number x = 13 12 10 8. We found R(x) = 11113 3, which has a digit difference of 8. Now, 

F(8) = |15-16|=l, 
F2(8) = F(1) = |15-2| = 13, 
F3(8) = F(13) = |15-26| = 11, 
F4(8) = F(ll) = |15-22 | -7 , 
F5(8) = F(7) = |15-14|=1. 

By Corollary 3, since the digit difference of R(x) is 8, the digit difference of R2(x) is F(8). 
More generally, for i > 1, the digit difference of Ri+\x) is F(8) . This is confirmed by examining 
the diff column in Table 1 and comparing it with the calculations above. Thus, we see that the F-
cycle <1,13,11,7) corresponds to the SSR cycle (i?2(x), i?3(x), i?4(x), i?5(x)> • 

The relevant properties of F are listed below. Proofs may be found in [9]. We will write 
F (d) in place of F(d) whenever the context requires this elaboration. 
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Theorem 2: Let k be the nonnegative integer such that 2*||g\ Then, for 0 < d < g, we have: 
(a) F(g12) = 0, F(0) = g, and F{g) = #. 
(J) rf is in an F-cycle if and only if 2k\\d. 
(c) For / > 1, /•*/ is in an Fig -cycle if and only if rf is in an F -cycle. More generally, (i-dh 

i-d2,...J-dn) is an Fig -cycle if and only if (dx, d2,. ..,dn) is an i^-cycle. 
(d) Let i be the nonnegative integer such that 2'\\d. If/ < k - 1 , 2/+1||F(^); if/ = * - 1 , 2*+1|F(<f); 

i f / > * - l , 2*||F(£/). 
f̂ J For / > 1, F'(af) is congruent to either lid or - 2ld modulo g. 

(f) 2k\\Fi(d)w\imi>k. 

Several conclusions are immediate from Theorem 2. By (a), 0 and g/2 are not contained in 
an F-cycle. Moreover, (g) is an F-cycle of length 1. This cycle is called the trivial cycle; all 
other cycles are proper cycles. Part (b) tells us that proper cycles exist if and only if g is not a 
power of 2. By (c), it suffices to determine cycles for odd g. Additionally, we need only consider 
those d which are relatively prime to g. We will call cycles containing such d prime. All other 
cycles are composite since they may be found using (c). Parts (b) and (f) together imply that 
Fl(d) is in a cycle whenever /' > k. 

Before continuing, we illustrate the previous theorem and definitions. We begin with g = 5. 
By Theorem 2(b), d is in an F5-cycle if and only if d is odd. Since F(l) = | 5 - 2| = 3 and F(3) = 
| 5 -6 |= 1, the only proper F5-cycle is (1,3). The trivial cycle is (5). 

As a second example, we let g = 20. By Theorem 2(b), d is in an F20 -cycle if and only if 
4\\d. Since g is even, each proper cycle is composite and may be derived from an F5-cycle by 
multiplying by 4. As we have just shown, the only proper F5-cycle is (1,3). Consequently, 
(4,12) is the only proper F2Q -cycle. 

Before considering a third example, we state another result which was proved in [9]. It tells 
us how to find the lengths of prime cycles. 

Theorem 3: Let g be an odd positive integer and let m be the smallest integer such that 2m is 
congruent to either 1 or -1 modulo g. Then each prime .F-cycle has length m. Moreover, there 
are 0(g)/2m such cycles, where 0(g) is the Euler Phi function. 

We now consider g- 15. By Theorem 2(b), d\s in an Fl5-cyde if and only if d\s odd. Since 
^(15) = 8 and 24 = 1 (mod 15), there is one prime cycle of length 4. As we have already seen, this 
cycle is (1,13,11, 7). The composite i^-cycles, found from the proper F3- and /^-cycles using 
Theorem 2(c), are <5> and (3, 9). 

THE SSR-CYCLES 

We now use the previous results to characterize the SSR cycles. 

Lemma 1: Suppose d generates a proper i^-cycle of length m. Then there exists a nonzero SSR 
cycle of length m. Moreover, this cycle is generated by an ordered number whose digit difference 
isaf. 
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Proof: Since g 12 is not in an F-cycle, F(d)*g/2for0<i. Let x = d d 0 0. Clearly, x 
has equal digit differences of d. Hence, the digit differences of Rf(x) are F'(d), / > 1. By hypothe-
sis, Fi(d)*Fm(d),0<i<m, and Fm(d) = d. This means that # ( x ) * / T ( x ) ; further, 7T(x) 
and x have the same digit differences. Hence, by Corollary 1, Rm+1(x) -R(x). Thus, <i?(x),..., 
Rm(x)) is an SSR cycle of length m; it is generated by Rm(x), whose digit difference is d. U 

Lemma 2: Suppose x generates a nonzero SSR cycle of length m. Let dbe the digit difference of 
x. If Fl(d) ^ g/2, 0<i <m, then d generates a proper F-cycle of length m. 

Proof: The digit difference of R(x) is F{d)±gl2,i>\. By hypothesis, Rm(x) = x; hence, 
Fm(d) = rf and d generates a proper F-cycle. If F(d) = d for some /', 0 < i < m, then by Corol-
lary 1, R1+l(x) - R(x). But then the SSR cycle would have length / <m. Thus, the F-cycle gen-
erated by d has length m. D 

Theorem 4: Suppose g = 2k • t, where 0 < k and t is an odd positive integer greater than 1. Let x 
be an ordered 4-digit base g number with equal digit differences of d. Then x generates an SSR 
cycle of length m if and only \id generates an F-cycle of length m. • 

Proof: By Lemmas 1 and 2, we need only consider the case when x is an ordered number 
with equal digit differences of g/2. Suppose that x generates a nonzero SSR cycle of length m. 
Then, by Corollary 3, the digit difference of R(x) is 1. Thus, for 1 </' < m, the digit differences of 
R(x) is F-\l). Since Rm(x) = x, F^\\) = g 12 = 2k~l • f. By Theorem 2(e), F ^ l ) is congru-
ent to either 2m~l or -2m~l modulo g. As a shorthand notation, we will write Fm_1(l) = ±2m'x 

(mod g). Hence, 2k~l -t = ±2m~l (mod 2k -t). Since t is an odd positive integer greater than 1, we 
have reached a contradiction. D 

Theorem 5: Suppose g-2k', where 0<&. Then there is exactly one nonzero SSR cycle. This 
cycle has length k and contains: 

w = l 1 0 0 ifg = 2, 
w = 2k-2k~2 2k-2k~2-\ 2k~2 2k~2-\ i fg>2. 

Proof: Since g is a power of 2, there are no proper F-cycles. Hence, by Lemma 2, there is 
at most one nonzero SSR cycle. Moreover, it must be generated by an ordered number whose 
digit difference is g 12. 

If g - 2, then (w) is a nonzero SSR cycle, since R(w) = w. If g > 2, the digit difference of w 
is 2k~l = g /2 . By Corollary 2, 

i?(w) = 2A:"1 2*-1 2 ^ - 1 2 ^ - 1 
and 

/?+20v) = 2*-2 ' 2^-27 '- l 27' 2 / - l , 0 < / < * - 2 . 

Thus, ^ ( w ) = w. D 

Theorems 4 and 5 completely characterize the nonzero SSR cycles. If g is not a power of 2, 
then the nonzero SSR cycles are in a one-to-one correspondence with the proper F-cycles. The 
cycle lengths can be. determined using Theorems 2(c) and 3. The numbers that generate the SSR 
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cycles can be found from the F-cycles using Corollary 2. If g is the k^ power of 2, then there is 
exactly one nonzero SSR cycle; it has length k. 

Returning to our base 15 example, previously we found that the F-cycles are (1,13,11, 7), 
(5), and (3, 9). The SSR cycle which corresponds to the first F-cycle is given in Table 1. The 
SSR cycle which corresponds to the F-cycle (5) is (*/), where the digit difference of u is 5; by 
Corollary 2, u = 10 9 5 4. The SSR cycle which corresponds to the F-cycle (3, 9) is <v, i?(v)>, 
where the digit difference of v is 3; by Corollary 2, v = 9 8 6 5. 

WHEN IS R\x) m A CYCLE? 

We now consider the following question. If x is an ordered 4-digit base g number, what is 
the smallest / such that R'(x) is in a cycle? 

Lemma 3: Let k be the nonnegative integer such that 2k\\g. For all d satisfying 0<d<g, 
Fk+l(d) is in an^-cycle. Moreover, Fk(l) is not in anF-cycle. 

Proof: The first statement follows immediately using parts (b) and (f) of Theorem 2. For the 
second, we use Theorem 2(d) to show that 2J\\FJ(l)forj<k-l and 2k+1\Fk(l). Hence, by 
Theorem 2(b), Fk(l) is not in an F-cycle. D 

Theorem 6: Suppose g = 2k • t, where 0 < k and t is an odd positive integer greater than 1. Let x 
be an ordered 4-digit base g number. Then R2k+2(x) is in an SSR cycle. Moreover, there exists 
an ordered 4-digit base g number^ such that R2k+l(y) is not in an SSR cycle. 

Proof: Let d be the digit difference of R(x). If d- 0, then R2(x) - 0. Hence, we can 
assume d ^ 0 . 

First, we consider the case when g is odd. The digit difference of R2(x) is F(d) = \g-2d\. 
Since F(d) is odd, it is in a proper F-cycle. Hence, by Theorem 4, R2(x) is in a nonzero SSR 
cycle. Now consider y = 1 0 0 0. Calculating R(y), we find: 

R(y) = g-i g-i o o. 
The digit difference of R(y) equals g-1, which is even. Since g-1 is not in an F-cycle, R(y) is 
not in an SSR cycle, by Theorem 4. 

Now suppose that g is even; i.e., k > 0. If F\d) ^ g/2 for 0 </, then Fl(d) is the digit dif-
ference of Rl+l(x). By Lemma 3, Fk+l(d) is in a proper F-cycle. Hence, Rk+2(x) is in an SSR 
cycle. On the other hand, suppose that F(d) = g/2 for some /, 0< i < k-1. Then the digit dif-
ference of R1+2(x) is 1. Consequently, ^ (1 ) is the digit difference of R1+J+2(x) for j < k, Since 
Fk(l) is not in a proper F-cycle, Rl+k+2(x) is not in an SSR cycle, by Theorem 4. However, 
again by Theorem 4, because F^+1(l) is in a proper F-cycle, Ri+k+3(x) is in an SSR cycle. Con-
sequently, for all x, R2k+2(x) is in an SSR cycle. 

We now consider y = t 0 0 0. The digit differences of y are t and 0. By Theorem 1, the 
digit difference of R(y) is d = 2k • t -1. By induction, it is easily established that 

Fi(d) = 2k-t-2i-t, 0<i<k-l. 

Hence, Fk~l(d) = g/2. By the results established above, R2k+l(y) is not in an SSR cycle. • 
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Lemma 4: Suppose g = 2k, where 1 < k. For all d satisfying 0 < d < g, there exists an integer / 
such that F(d) = gl 2 for 0 < i < k - 2. 

Proof: Let j be the integer such that 2s ||rf; of course, 0 < j < k - 1 . Then 2k~l~j • d = 2fc_1 

(mod 2*). Since Fk-l~J(d) = ±2*~w • rf (modg), Fk~l-j{d) = g/2. 
Ifk = 2,thmF°(g-l) = g-l*2. If k>2Jor 0<i <k-2, 

Fi(g-l) = F(2k-l) = 2k-2i*2k-\ D 

Theorem 7: Suppose g-2k, where 1 < £. Let x be an ordered 4-digit base g number. Then 
Rk(x) is in an SSR cycle. Moreover, there exists an ordered 4-digit base g number y such that 
Rk~l(y) is not in an SSR cycle. 

Proof: Let d be the digit difference of R(x). If d = 0, then R2(x) = 0. Hence, we can 
assume d & 0. By Lemma 4, i7'(d) - gl2 for some /, 0 < / < k-1. By Theorem 5, this implies 
that R1+l(x) is in the nonzero SSR cycle. Hence, for all x, Rk(x) is in an SSR cycle. 

We now consider y = 1 0 0 0. Calculating R(y), we find 

R(y) = g-i g-i o o. 
The digit difference of R(y) is g-l. By Lemma 4, F(g-l)^g/2 for i<k-2. Hence, 
Rk~l(y) is not in the SSR cycle. • 

WHEN DOES THE SSR ROUTINE YIELD A CONSTANT? 

Finally, are there bases g for which the SSR routine yields a single, nonzero constant? 

Lemma 5: Suppose \<d <g. Then (d) is the only proper F-cycle if and only ifd = g/3, where 
g = 2k-3 for some 0<&. 

Proof: First, suppose that (d) is the only proper F-cycle. Since F(d) = d,\g-2d\ = d and 
d - g 13. To prove that g has the stated form, we write g - 2k • 3 • t, where t is odd. If 1 < t, 
then, by Theorem 2(b), 2^-3 is in a proper F-cycle. But this implies there is a second proper 
F-cycle. Consequently, t-\ and g - 2k • 3. The converse is easily established using Theorem 
2(b). D 

Theorem 8: Suppose g = 2k • 3, where 0 < k. Let 

z = 2k+l 2fc+1-l 2k 2*- l . . 

If x is an ordered 4-digit base g number such that R2(x) it 0, then R2k+2(x) = z. 

Proof: By Lemma 5, there is only one proper F-cycle, (2k). Consequently, by Theorem 4, 
there is only one nonzero SSR cycle and it has length 1. This cycle is <z>, since R(z) -z. By 
Theorem 6, R2k+2{x) is in a cycle; hence, R2k+2(x) = z. D 
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