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INTRODUCTION 

Let S„ be the set of n! permutations II = a^x2...an of Z„ = (1,2,...,«}. For II eS„, we write 
II = axa2...an, where n(/) = at. 

Definition 1: P„: = {U e S„ \al+l * a{ +1 for all i,\<i<n), \P„\ = p„; 
P„:={UGP„\an=n}, \P„\ = p„; 
P; = {II e S„ \ai+1 *a,-\ for all i, 1 </<»}, | P„'| = p'n; 
P„'={nGP„'|a„=«}, |P„'| = ^ . 

Definition 2: T„:=<UGP„ 

% = *; 

T'=\n^pj 

2_,aj > — - for any i,l<i <n>, 
J-i 2 

^ i(i + l)~ . . „ . 
l^Oj > for any /, \<i <n>, 
j=i 2 

T{=c/>, \Tn\ = tn, \T;\ = fn. 

Definitions: ^:=P„nP„', G„:=T„nT^, |GJ = r„, \G„\ = g„. 

From Computer Science, Varol first studied Tn and obtained the recurrence for tn (see [1]). 
In [2], R. Luan discussed the enumeration of T£ and Gn. This paper deals with the above prob-
lems in a way that is different from [1] and [2]. A series of new formulas of enumeration for tn9 
t'„, and gn (Theorems 1-9) has been derived. 

1. ENUMERATION OF t AND t' 
n n 

Lemma 1: «zj , n - k 
P„ = (n-\)\Yd{-\fU

1^ = Dn + Dn_l, (1.1) 
k=0 Kl 

where Dn = «!Zy= 0-^- is the number of derangement of {1,2,..., n) (see [3]). 

Proof: Consider the set S' = {(1,2); (2, 3);...;(«-1, ri)}. We say that an element (J, j +1) of 
S' is in a permutation II if IT(/) = y, H(i +1) = y +1 for some z. 

Let Wk be the number of permutations in S„ containing at least k elements of S'. The number 
of ways of taking k elements from S' is ("JT1). Suppose the k elements have j digits in common. 
Then these k elements form (k-j) continuous sequences of natural numbers, each of which is 
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called a block. Thus, the number of remaining elements in Zn is (n-2k + j). The number of per-
mutations of (n-2k + j) elements and (k - j) blocks is [in -2k + j) + (k- j)] \ = (n-k)\. Hence, 
Wk=("?)(n-k)\. 

By the principle of inclusion and exclusion (see [3]): 

k=Q V / k=0 K • k=Q V / k=0 

k\ where Dn~n\ Z£=0 ̂ -jr is the number of derangement of {1,2,..., n) (see [3], p. 59). D 

Lemma 2: n-l 
K = l H r w P y , where p0 = l. (1.2) 

Proof: It is easy to see that pn = / V i ~ Pn-\ • Applying the above recurrence repeatedly, we 
get (1.2). D 

Let oo 
PW^Pn*?. (1.3) 

Theorem 1: 

'»=I(-ir'A-2fl^- (i-4) 
j=0 / = ! 

Proof: Consider the following subset P„° of P„. 

P„° ={(a1a2...aI....an) e P j for some/, \<i <n, 

i(i + l) u ~ . . a 1 +a 2 + - - + a / =— - , but fori <j<n, 

7 0 +1) 
1 2 ; • 2 }. 

If i < w - 1 , then the number of such permutations is pfi^; if i = n - 1 , the number is pn„i. Thus, 
n-2 

7 = 1 

Hence, 
n-2 

'„ = Pn ~ I # I = Pn ~ X ft fn -i~Pn~^-
/=1 

Substituting (1.2) into the above formula, we have (1.4). D 

To simplify (1.4), we establish a lemma as follows. 

Lemma 3: If 
n-2 

tn=an-Y,hitn-n "*2, z=l 
then 
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L = 

a0 
b, i 
b2 \ i 

h-2 K-2, 

0 «3 
aA 

bx 1 -

(1.5) 

Proof: This follows from the expansion of the determinant along the bottom row. D 
Hence, we car. write (1.4) as 

Theorem 2: 
1 

A A 1 

P2-p1 + l 
0 ft-ft+A"1 

ft-ft+ft-A + 1 
A 1 -

A-2 A-3 A A-A- i+A, -2 - • • •+ ( - ! ) " 

«>2, 

Example 1: 

h = 
1 0 0 ft-A + l 
A 1 0 A - A + A - 1 

A A 1 A - A + A - A + 1 

ft ft A ft-ft+ft-ft+A"1 

1 0 0 1 
1 1 0 2 
1 1 1 9 
3 1 1 44 

= 33. 

Let T(x) = £"=0 ?„*", 'o = 0. Then we have 

Theorem 3: 

T(x) = (l + x y 1 - ^ , where P(x) = f>„x" . 
n=0 

Proof: From (1.4), 
oo oo o o / o o A 

P(X)T(X) = YsPn^y = I I > A 
«=0 «=0 

O O / O O 

=£ S(-ir'/',k=S(-ir^,l/'<^,-i=(i+xrl^)-i. 
w=0 V=0 / w=0 «=0 Hence, 

Now we shall consider t'n 

Lemma 4: 

T^-^-m ° 

P'n=Pn-

(1.6) 

(1.7) 

(1.8) 

Proof: If (ala2...a1^ ePn, then {anan_x.. .a2a]) ePJ. The above correspondence is one-to-
one; thus, |P j = |i>;|. D 

no [MAY 



VAROL'S PERMUTATION AND ITS GENERALIZATION 

n-\ 

Arguing as in the proof of Theorem 1, we get 

Theorem 4: 

By recurrence (1.9) and Lemma 4, we have an explicit formula for t'n as follows. 

Theorem 5: 
| l 

0 

(1.9) 

'» = 
A 1 
ft A 1 

A 
ft 
ft 

1 A-i 
A Pn \Pn-\ Pn-2 ••• 

Let the generating function for t'„ be T'(x) = Z"=0 ̂ x", ?„ = 0 

(1.10) 

Theorem 6: r(x) = i - i 
P(x) 

(1,11) 

iVoo/- By (1.9), Z^o A C = ft'" ^ ! • Thus> P(x)T(x) = P(x) -1, and we have 
1 

r(x) = i-

Lemma 5: 

P(x) 
as required. • 

(1.12) 

i.e.. 

Proof: Since T(x) = 1 / (1 + x) - 1 / [P(x)], T'(x) = 1 - 1 /[P(x)]; hence, 

7(x)-r(x) = - ^ , 

Zft,-̂ )*" = I(-l)"r". 
W=0 «=0 

Comparing the coefficients of xn, we have tn~fn- (-1)", i.e., (1.12). D 
According to (1.12) and (1.10), we have a simple expression for tn as follows: 

Theorem 7: 

t = 

1 
A 
ft 

ft-i 

1 
A 1 

A 
0 ft 

ft 

1 ft-1 
ft A A 

+(-1)". (1.13) 

For Example 1, we can count t5 by the above formula: 
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1 
A 
A 
A 

0 
1 
A 
A 

0 
0 
1 
A 

0 
0 
0 
1 

A 
A 
A 
A 

ft ft ft ft ft 

+ (-l)5 = 

1 0 0 0 1 
1 1 0 0 1 
1 1 1 0 3 
3 1 1 1 11 

11 3 1 1 53 

- 1 = 33. 

Since the enumeration for pn is simple (we may look it up in a table of values of Dn) count-
ing tn by (1.1) and (1.13) is easier than the method of [2]. 

2. ENUMERATION OF gn 

Definition 4: i?V,:= {U = (ala2...an) eS„\H contains either (z,z + l) or (z + l,z), but for V/<z, 
II contains neither (y, j +1) nor (J +1,7)}. Let | i^ . | = r .. 

Lemma 6: rnJ = 2(n-1)!, zz > 2; r u = 1. 

Proof: By definition, i^j is all permutations of S„ containing either (1,2) or (2,1). If we 
regard (1,2) as an element, then (1,2) and the remaining (n-2) elements of Z„ form (n-l)\ 
permutations. Note that there are two permutations of {1,2}. Thus, rnl = 2{n -1)!. D 

Lemma 7: r„a = 2(n -1)!- 2{n - 2)!. 

Proof: Let us count the number of permutations containing either (2, 3) or (3,2) but neither 
(1,2) nor (2,1). 

Arguing as in Lemma 6, we know that the number of permutations containing either (2, 3) or 
(3,2) is 2(n -1)!. We have to eliminate those permutations containing (1,2, 3) or (3,2,1), the 
number of which is 2(^-2)! by an argument analogous to Lemma 6. Thus, we have proved 
Lemma 7. • 

Lemma 8: rnJ - r ^ - r ^ ^ - r ^ ^ , where 2 <i <n, rn0 = 0. (2.1) 

Proof: Each permutation of R„ 7 contains (/', / +1) or (/ +1, i). If (/', i +1) is followed by / - 1 
or if (/' +1, /) is preceded by / - 1 , then (z +1) is removed, and we subtract 1 from every digit that 
is greater than z + 1. Thus, we get an element of i^_2 t_x. Conversely, given a permutation of 
i^_i5/_i, we add 1 to each element greater than i and then interpose an / + 1 between (/,/'-l) or 
(z - 1 , z). This yields an element of R^ i. 

If (z, z +1) is not followed by z - 1 or preceded by (z +1, z), we regard (z, z -f 1) or (z +1, z) as 
a single element and subtract 1 from every digit greater than z + 1. This yields an element 
i r i u u ^ u u - u ^ 1 ) M . Thus, 

rn,i ~rn-\,i-\ + 2 | 

7-1 

(«-l)!-Evu 
J=1 

Hence, 

rnJ=2\ 
7-2 

(^-l)!-I^-i,y fn-l,i-l> (2.2) 
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i.e., 
rn, i - Vn,i-l ~ rn-\,i-l) ~ Vn-\, i-l • ^ 

Using Lemmas 6, 7, and 8 above, we can express rn^k in terms ofrnl: 
rn,i =rnA~rn_lA = 2(/!-l)!-2(n-2)!, 
^ = ^ M - 3 r » - u + ^ 2 . i = 2(H-l)!-6(ii-2)!+2(/i-3)!, 

In general, let 
r%k=akA2(n-l)\-ak22(n-2)\ + -+akk(-i)M2(n-k)\. 

Obviously akJ is independent of n. It only depends on k. We can prove 

Lemma 9: 

a t , ; = a*-i , > + ak-i, j-i + %-a. j-i, 1 < 7 < * , ( 2 - 3 ) 

iVoo/- Since r„>k = £y=iafcy2(«-./)!(-l>'+1 by (2.1), we have: 
rn,k=rn, k-\ ~~ rn-\,k-\ ~ Vn-\,k-2 

y=i M M 

= %_u2(/ i - l ) !+ | ;W>^^ 

Comparing the two formulas above, we obtain relations for ank as follows: 

%, l = afc-l,l> t h u s > ak,l = ak-l,l=ak-2,l=-~=al,l = l > 
afc,/ = %-l, y + %-l, /- l + %-2,,-l> 1 < J < *> 
%,it = %-i ,*- i , t h u s > * * , ^ = ak-i,ik-i = --- = «i.i a 

Lemma 10: akJ = ak^k+l_j. (2.4) 

Proof: We prove the lemma by induction on k. For & = 1,2, or 3, this is straightforward. 
Suppose that (2.3) holds for k-l. By (2.2), 

ak, j ~ ak-\ j + a£-l , j-l + a£-2, y-1 ~ ak-l, k-j + a£-l , £-./+l + ak-2, k-j ~ ak, k+l-j • 

By (2.3) and (2.4), we easily obtain the expression for rnk\ 

rnA = 2(n-l)\, 
rn2 = 2(n-l)\-3-2(n-2)\ + 2(n-3)\, 
rJIi3 = 2(/i-l)!-5-2(/f-2)!+5-2(«-3)!-2(f!-4)!, 
r„4 = 2(/i-l)!-7-2(#i-2)! + 13-2(/i-3)!-7-2(#i-4)!+2(#i-5)!. 
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For akj, using 
uk-2J-l 

+ 
ak-l,j-l+ak-l,J 

we obtain the above formulas one by one. Now, using (2.1), we get the table for rnk shown 
below. 

TABLE 1. r ^ ( * < # i ) , rn^n: = rn 

n * 
0 
1 
2 
3 
4 
5 
6 
7 

0 

~6~ 
0 
0 
0 
0 
0 
0 
0 

1 

1 
2 
4 
12 
48 
240 
1440 

2 

0 
2 
8 
36 
192 
1200 

3 

0 
2 
16 
108 
768 

4 

2 
6 
56 
468 

•5 

14 
34 
304 

6 

90 
214 

Setting fn(x) = Z£=o ̂ kxk, and letting / = n - 1 in (2.2), we have 

Corollary: 

Lemma 11: 

rn,n-i = 2(w-1)! + V u - 2 - 2 / U 0 ) • 

'n 2 ^ " + 1 , w ' w . w - l / ' 

(2.5) 

(2.6) 

Proof: Denote the set of permutations containing neither (n-l,n + l, n) nor («,« +1,« -1) 

For any a GR„, inserting n + l to the left or right of« in a , we get a' e i^+ 1 „. Conversely, 
if a ' ei^+ 1 then eliminating w + 1 yields a el^. Hence, 2rw =|̂ C-i,«l-

Now we count |i£+i,J- ^ *s sufficient to subtract the number of permutations containing 
(n -1, n +1, w) or («,« +1, n -1) in i^+1 n from rw+1 w. Regard (n +1,«) as a single element. Then 
^rn n_x is the number of permutations containing no (n-l,n +1, ri). 

By a similar argument, the number of permutations containing no (/?, w + 1, w-1) is y ^ ^ . 
Thus,|i^+i,J = ̂ + i , „ - i ^„ - i -Y^„ - i - Since 2rn=|^*+1>J, we get (2.6). • 

Lemma 12: 
r„ = (»-1)(«-1)! +/„_1(l)-/„(l) + r„_1) 

/•„=X("-0(»-0! -/„0), 
;=1 

(2.7) 

(2.8) 

where 0-0! = 1. 
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Proof: Substituting (2.5) into (2.6), we obtain 

rn=l[2.nur^_l-2fn(l)-2(n-l)\-rn_^^ 

Using (2.6), we get (2.7). Applying (2.7) repeatedly, we have 

rn = nf(n-i)(n-i)\-fn(l) + r2+f2(l). 

Since r2 = 0 and /n(l) = 2, we obtain (2.8). D 

By (2.6), it is easy to get rn from rn>k. In Table 1 we denote rn>n =rn. Thus, by (2.6), the 
values ofrn on the principal diagonal can be obtained as half the difference between the two adja-
cent elements on the secondary diagonal. Unfortunately, we cannot count rn until we complete 
Table 1. But (2.7) and (2.8) can do that, namely, both rn k and r„ are counted without rw+1 k. 

If we set /„+1(x) = T,"k=0r„+hkxk, we have 

Lemma 13: 

/„(*) = l - x 
[2(n-l)!-2r„_1^-1-(l + x)/,_1(x)]. (2.9) 

Proof: By (2.1), we have 
n-\ 

k=2 

n-\ 

I 
k=2 

n-\ 

• I ' 
k=2 

2^rn,kX - Z^rn,k-\X 2^rn~l,k-lX 2^rn-l,k-2X^ 

w-1 

I' 
k=2 

fn(X) ~ rn, lX = XfniX) ~ Tn, n-l^ ~ Xfn-l(X) ~ ^ fn-l(X) + V l , W - 2 * " • 

By (2.6), we have 

(1 - x)/„(x) = 2{n-1)!x -2rn_lX" - x(l + x)f^(x). D 

Example 2: Since /4(x) = 12x + 8x2+2x3, r4 = 2. We get 

/5(x) = - ^ [ 2 - 4 ! - 2 - 2 x 4 - ( l + x)(12 + 8x2 + 2x3)] 
l - x 

X [48-12-20x2-10x3-6x4] 
l - x 

= 48x + 36x2 + 16x3 + 6x4, 

i.e., rs> j = 48, r5 2 = 36, r53 = 16, r5>4 = 6. From (2.9), we may obtain 

2 
/„(*) = ( l - x ) n-2 

n-2 

I X (-ly-^w - o! xz'(i+xy-^i - xf -i-2 

n-2 

+x" X (-l)%-i(l+^r'c1 - *r/_2+(-i)"^_i(i+xf-
i=l 

(2.10) 

The application of (2.10) is not as convenient as that of (2.9), but it provides the following 
information: r„ k must be even. It coincides with the expression of rn^k, i.e., 
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7=1 

Theorem 7: «- i 

j=i j=\ 

Proof: By a method similar to Theorem 1, it is easy to show that 
n-l 

on ~ 'n 2-a j&n-j ~~ n-l ? 
7=1 

where T^~x is the number of permutations in i ^ whose right-most entry is n -1. 
Similar to Theorem 1, we have 

n-l 

(2.11) 

(2.12) 

7=1 

(2.13) 

Now, substituting (2.13) into (2.12), we obtain (2.11) as required. D 

According to (2.11), we can count g„ by recurrence. Using (2.11) and noticing that 
gx = g2 = g3 = 0, we get an explicit formula for gn. 

Theorem 8: 

8n 

1 1 
r2 1 1 

r5-r4 

1 r„_,-••• + (-1TV4 •n-l 
r„_4 r„_5 ••• r2 1 rn-rn_x + ••• + ( - 1)V4 

, «>4 . (2.14) 

Example 3: 

g6 = 
1 0 r4 
1 1 r5-r4 
r2 1 r6-/-5+r4 

1 0 2 
1 1 14-2 
0 1 90-14 + 2 

68. 

Let G(x) = ^g„x", R(x) = £ #•„*», r0 = 0. 
n=0 «=0 

- i mr„\ , i \ - i Theorem 9: G(x) = (1 + x)"1 - (i?(x) +1)"1. 

Proof: By (2.11), 
n-l 

I^u^l(-ir^(-i)" 
7=1 7=1 

Noticing that gx = 0, we have 

G(JC) • R(x) + G(x) = (1 + xylR(x) + (1 + x)~l -1; 

thus, G(x) = (l + x)-1-(i?(x) + l)-1. D 
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Corollary; 
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Author and Title Index I 
T h e AUTHOR, TITLE, KEY-WORD, ELEMENTARY PROBLEMS, and ADVANCED PROBLEMS ind ices for t h e 1 
first 30 volumes of The Fibonacci Quarterly have been completed by Dr. Charles K. Cook. 1 
Publication of the completed indices is on a 3.5-inch, high density disk. The price for a copyrighted 1 
version of the disk will be $40.00 plus postage for non-subscribers, while subscribers to The Fibonacci 1 
Quarterly need only pay $20.00 plus postage. For additional information, or to order a disk copy of 1 
the indices, write to: 1 

PROFESSOR CHARLES K. COOK 1 
DEPARTMENT OF MATHEMATICS 1 
UNIVERSITY OF SOUTH CAROLINA AT SUMTER 1 
1 LOUISE CIRCLE 1 
SUMTER, SC 29150 1 

The indices have been compiled using WORDPERFECT. Should you wish to order a copy of the indices 1 
for another wordprocessor or for a non-compatible IBM machine, please explain your situation to Dr. 1 
Cook when you place your order and he will try to accommodate you. DO NOT SEND PAYMENT 1 
WITH YOUR ORDER. You will be billed for the indices and postage by Dr. Cook when he sends 1 
you the disk. A star is used in the indices to indicate unsolved problems. Furthermore, Dr. Cook is 1 
working on a SUBJECT index and will also be classifying all articles by use of the AMS Classification 1 
Scheme. Those who purchase the indices will be given one free update of all indices when the SUBJECT 1 
index and the AMS Classification of all articles published in The Fibonacci Quarterly are completed. 1 
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