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1. INTRODUCTION 

In this paper, certain interesting sequences of positive integers are investigated. As will be 
demonstrated, these are subsequences of the Fibonacci and Lucas pseudoprimes, as they have 
been defined in the author's previous papers ([2], [3], [4], [9]). Indeed, it will be shown that the 
elements of two of these subsequences are strong Lucas pseudoprimes and Euler-Lucas pseudo-
primes. 

The secondary aim of this paper is to partially unify some of the more significant results pre-
viously obtained by other authors regarding such pseudoprimes. 

Throughout this paper, lower-case letters represent integers, usually positive (unless other-
wise indicated); the letters p, qy qly and r represent primes. 

In Section 2, the definitions and properties required to prove our main results are given. 
These are readily accessible in the standard literature and are presented with minimal commentary. 

A brief historical summary of some of the more relevant findings of previous researchers is 
presented in Section 3. 

Section 4 sets forth the main results, including proofs, and Section 5 consists of concluding 
remarks. 

28 DEFINITIONS AND PROPERTIES 

The Jacobi symbol is defined in any elementary number theory text, where it is customarily 
expressed as a product of Legendre symbols in its definition. As a consequence of such defini-
tion, the Jacobi symbol assumes certain values (either +1 or -1) dependent on the residue class of 
its arguments. We take a slightly different approach and simply define the Jacobi symbol in terms 
of this residue class. The arguments are restricted to the values that are relevant to the topic of 
this paper. 

Definition 2.1 The Jacobi symbol (f) is defined as follows for u = -l, - 3 , or 5, and for the 
indicated values of n: 

0 / n^ -D f1 ifnEEl (mod 4), (a) — - ( - I F 7 U ; [-1 if/i = - l (mod 4); 

f z ^ J 1 * " = 1 (mod 6), 
U (n J [-1 ifws-1 (mod6); 

(I)-ll tf H 5 5 * 1 (mod 10), 
U J " 1-1 if n = ±3 (mod 10). 
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For brevity, we also write en for (f). Note that if w = /?, an odd prime, the Jacobi symbol coin-
cides with the Legendre symbol. The symbol (f) is undefined for values of n not indicated above. 

Definition 2.2: Given any integer u, the Fibonacci entry-point of u, denoted by Z(u), is the 
smallest positive integer z such that u\Fz. If Z(p) -m,we say that p is a primitive prime divisor 
(p.p.d.)ofiv 

Note: A classical result of Carmichael states that Fu has a p.p.d. for all u =£ 1, 2, 6, or 12. 

Definition 23: 

(a) Given any integer u, the Fibonacci period (mod u), denoted by k(u), is the smallest 
positive integer k such that Fn+k = Fn (mod u) for all integers n. 

(b) The Lucas period (mod u), denoted by k(u), is the smallest positive integer k such that 
Ln+£ = Ln (mod u) for all integers n. 

Definition 2.4: The strong Lucas pseudoprimes (denoted SLPP's) are those composite u with 
gcd(M, 10) = 1, u-su-d-2\ s>lyd being odd, such that either: 

(a) u\Fd, or 

(b) u|Ld t for some t with 0<t <s. 

Let [/denote the set of SLPP's. 

Definition 2.5: The Euler-Lucas pseudoprimes (denoted ELPP's) are those composite u with 
gcd(w, 10) = 1 such that either 

(a) i / |F i ( l | _ 0 when(^)=l ,or 

(*>) ^ i M
w h e n ( ^ = " L 

Let F denote the set of ELPP's. 

Definition 2.6: The Fibonacci pseudoprimes (denoted FPP's) are those composite u with 
gcd(n, 10) = 1 such that u\Fu_£ . Let Xdenote the set of FPP!s. 

Definition 2.7: The Lucas pseudoprimes (denoted LPP's) are those composite u such that Lu = 1 
(mod w). Let Y denote the set of LPP's. 

Definition 2.8: The Fibonacci-Lucas pseudoprimes (denoted FLPP's) are those u that are both 
FPP's and LPP's. Let W = X o 7 denote the set of FLPP's. 

Comment: As we will later indicate, the sets F and W are identical. For the time being, 
however, we will maintain the distinction between these two sets. 

In addition to the pseudoprimes defined above, there are other related pseudoprimes that 
have been studied by previous authors. Since these are only of peripheral interest to the topic of 
this paper, we merely mention these in passing. For example, Rotkiewicz [16], [17] and Baillie & 
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Wagstaff [1] discuss sequences of psuedoprimes u that (for the Fibonacci and Lucas sequences in 
particular) satisfy either of the following relations, given that gcd(u, 10) = 1: 

Fu = eu (mod a); (2.1) 

Lu_£u^2su (mod a). (2.2) 

It may be shown that if u satisfies any two of the relations given in Definitions 2.6, 2.7, or in (2.1) 
and (2.2), the other two relations are implied. 

We next introduce the special sequences that are of interest to the topic of this paper. 

Definition 2.9: Define the following ratios for any arbitrary prime/? (except as indicated), and 
f o r e - 0,1,2,...: 

(tt) A(P) = FpTl /F
pe, P*^ 4 ( 5 ) = ̂ V+l /5F

5el 
(h) Be(p) = Lpe+l/Lpe,p*2; 

(c) Ce(p) = F2y+l /F2y, p*2,5; Ce(5) = F^+l ISF^. 

Note that Ce(p) = Ae(p)Be(p) for all odd p. Where no confusion is likely to arise, we omit 
the argument/? and/or the subscript e. Clearly, A, B, and C are positive integers in all cases. 

Next, we indicate some relevant properties. 

Properties 2.1: 
(a) Z(u)\v iff u\Fv; 
(b) Z(p)\(p-sp); 

(c) Z(u) = LCM{Z(pe)}; 
P II" 

(d) Z(pe) = pfZ(p) for some/with 0 < / < e; 
(e) for all odd/?, Z(p) is even iff p\Lu for some u. 

Properties 2.2: 

(a) k(u) = i _ 
[5k(u) if 5|»; 

(h) k(u) = LCM{k(p«)}; 
p II" 

(c) k(pe) = pfk(p) for some / with 0</<e (for odd primes p, f is the same as in 
Property 2.1(d); 

\Z(p) if Z{p) = 2 (mod 4), 
hZ(p) if 4\Z(pl 
Uz(p) if Z(p) is odd. 

(d) if/7^2,5, k(p): 

Note: Properties 2.2(b)-(d) for the Lucas period also apply to the Fibonacci period k(u); 
however, scant use of this fact will be made here. 
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Properties 2.3: We assume p ^ 2 , 5 and write pr = y ( p - l ) , m = pe, s = s In (e) and (f) 
below, we assume gcd(??, 10) — 1 and write t = j(n-sn). 

(a) A = (-iy'\l + t(-l)JL2m} 
V / - i ) 

(b) B = l+^L2mJ; 

(c) C = l + fx,.; 

W ^2mp+£ ~ ~s + •>*'mp+£*'mp = £ + ^mp+s^mp' 

(e) L2
t-5LtFt+En+5F?+£n=(-l)'+e„, 

(f) L]+En-5Lt+sFt+5F? = {-\)'. 

The derivations of Properties 2.3 involve elementary identities and are omitted. We will return to 
these definitions and properties in Section 4. First, however, we give a brief overview of some of 
the more significant results. 

3. HISTORICAL SUMMARY 

The use of the term "pseudoprime" in the preceding section stems from the fact that the 
defining relations are satisfied when u = p (with p^2,5 in all but Definition 2.7). The author's 
papers [2], [3], [4] may be referred to for comments regarding the merit of adopting the 
nomenclature employed in Definitions 2.6-2.8, since other nomenclature is used by other authors. 
Some of the prior findings of other authors have been mentioned in the author's papers (op.cit); 
for the sake of continuity, we reiterate these findings below. 

In a 1955 paper by Duparc [12], apparently the first proof that X, 7, and Ware infinite sets is 
given. In particular, Duparc showed that F2p e X for all p > 5. This result was independently re-
discovered by E. Lehmer in a 1964 paper [14]. Using a different method, Parberry [15] showed 
that X is infinite; specifically, Parberry showed that if gcd(/i, 30) = 1 and TIGX, then F„GX 
[from which it follows necessarily that gcd(i^, 30) = 1]. In a 1986 paper [13], Kiss, Phong, and 
Lieuwens showed that Wis infinite; of course, this implies that X and Y are infinite. In a recent 
paper [2], the author proved that the "LPP" counterpart of Parberry's result holds, namely that if 
n GY and gcd(?2,6) = 1, then Ln GY [from which it follows necessarily that gcd(Ln, 6) = 1]. This 
is an independent proof that 7 is infinite. 

It is also known that all LPP's are odd. Apparently the first proof of this result was given by 
White, Hunt, and Dresel in 1977 paper [18]. Other independent proofs of this result were subse-
quently given by Di Porto [10] and by the author [3]. 

Many other interesting properties (or apparent properties) may be given, but we will restrict 
our discussion to those properties that are more or less relevant to the topic of this paper and, in 
particular, to the ratios introduced in Definition 2.9. 
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Di Porto and Filipponi observed, and later proved in a 1988 paper [11], that if Lr is com-
posite, it is a LPP. In a recently submitted problem for this journal [6], the author proves a 
generalization of such a result; this is indicated below in (3.1). 

Other observations made recently by the author have been submitted to this journal as pro-
posed problems (viz. [7]. [8]) and are indicated below: 

If 4 ( 2 ) is composite, then Ae(2) GW; (3.1) 

If e > 1 and 4 ( 3 ) [Be(3)] is composite, then Ae(3) [(Be(3)] GW; (3.2) 
Q ( 3 ) E ( X - 7 ) ; (3.3) 

If 4 ( 5 ) [Be(5)] is composite, then 4 (5 ) [Be(5)] e W; (3.4) 
Q ( 5 ) e ( X - 7 ) . (3.5) 

In fact, even stronger results are true, although we will not prove these here; namely, 
A(P) eU, ifp = 2, 3,5, and Be(p) eU, ifp = 3,5. 

The results indicated in (3.1)-(3.5) were obtained initially, suggesting the generalizations that 
are indicated in Section 4 (for p > 5). 

Note that there is no definition of Be(2) in Definition 2.9(b), since L el[L e+i. Also, there is 
no definition of Q(2 ) , since this would be essentially the same as for Ae(2) (by virtue of the iden-
tity F2n =FnLn). 

The result of (3.2) excludes the case e = 0, since L^ = 4 is composite but is neither a FPP nor 
a LPP. Also, note the extra factor of 5 in the denominator of the definitions of Ae(5) and Q(5); 
this is a consequence of the special role played by the number 5 in the Fibonacci and Lucas 
sequences. 

Therefore, for one reason or another, the primes 2, 3, and 5 require special treatment. This is 
not the case for p > 5; in the remainder of this paper we will assume p>5. 

It is worthwhile to reiterate the notation introduced in the prologue to Properties 2.3, since 
we will use this frequently: 

s = sp, m = pe, e = 0,l, . . . . (3.6) 

We will also write mp for pe+l, for brevity. Note also that gcd(4 B) - 1, AB = C, and that 4 B, 
and C are all relatively prime to 30. 

4. MAIN RESULTS 

We will make frequent use of the definitions and properties introduced in Section 2, often 
without specific reference thereto. Our main results are Theorems 4.1 and 4.2 (with their corol-
laries). 

Theorem 4.1: 
(a) If A is composite, then A eU; 
(b) IfB is composite, then B GU. 

Corollary 4.1: 
(a) If A is composite, then A eW; 
(b) IfB is composite, then B eW. 
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Corollary 4.2: 
(a) If Fp is composite, then Fp e W; 

(b) If Lp is composite, then Lp eW. 

Our proof of the theorems requires several preliminary results, indicated in this section as 
lemmas. 

Lemma 4.1: Z(A) = mp; Z(B) = Z(C) - Imp. 

Proof: From Definition 2.9 and from Carmichael's result (see Note after Definition 2.2), it 
follows that Z(q) = mp for some q with q\Fmp. Also, q\Fm, since Z{q)\m. Then q\A. Indeed, 
Z(r) = mp for all prime r with r \F , r\Fm. Then Z(^) = mp. 

Using Property 2.1(e), we argue similarly that Z{B)-2mp. Then, since C- AB, Z{C)~ 
LCM(mp, 2mp) = 2mp. 

Lemma 4.2: A = sp, B = l, C = £ (mod mp). 

Proof: This follows directly from Theorem 1 of a recent paper by Young [19], along with 
the observation that C = AB. 

Lemma 43: A = eA, B = sB, C = sc (mod mp). 

Proof: Since Z(g) = mp for all q\A, we have mp\{q-sq) or q = sq (mod mp). If ^ = n # ^ , 

then 4 = Yl(sgY = II £ / = sA (mod mp). Likewise, B-sB (mod mp). Also, C = AB = sAsB = 

£ c (mod mp). 

Combining the results of Lemmas 4.2 and 4.3, we obtain 

Lemma 4.4: sA - ec - 8p\ sB-l. 

Henceforth, we use the symbol s interchangeably to denote sA, sc, or ep\ however, sB-\ 
in all cases. 

Lemma 4.5: k(A) = k(C) = 4mp; k(B) = 2mp. 

Proof: Let g be the same as in the proof of Lemma 4.1. Then, since Z(q) = mp is odd, it 
follows from Property 2.2(d) that k(q) = 4mp for all q\A; thus, k(A) = 4mp. But, A ^ ) =2mp 
= Z ( ^ ) for all qx\B, since 2mp = 2 (mod 4). Then k(B) = 2mp and fc(C) = LCM(4wp, 2m/?) = 
4mp„ 

Proof of Theorem 4.1: Since gcd(^, 10) = 1, Lemma 4.3 implies that A - s - 2s • d for some 
s>\ and odd rf, such that Z(A) = mp\d. Then A\Fd, which shows that'll e [ / if A is composite 
[using Definition 2.4(a)]. 

Similarly, B-1 = 2S] • dx for some sx > 1, odd <il3 such that Z(5) = 2mp\2dx. Since m p | ^ and 
dx is odd, we have Lmp\Ld . Also, B\Lmp, and so 5|Z# . By Definition 2.4(b), B ell, provided 
B is composite. The proof is complete. 
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To prove Corollary 4.1, we invoke Theorem 3 of a 1980 paper by Baillie and Wagstaff [1], 
which implies that all SLPP's are ELPP's, i.e., that U^V. Also, certain results due to 
Rotkiewicz (see [16], [17]) imply that all ELPP's are FLPP's, i.e., that V cff'. Then U^W, 
which together with Theorem 4.1 implies Corollary 4.1. Corollary 4.2 is a special case of this 
(with e = 0); this result was obtained by the author in a recent paper [4]. 

As mentioned after Definition 2.8, the author shows (in a problem [5] submitted to this 
journal) that the sets Vrnd Ware actually identical. In light of this, no further explicit mention of 
the set of ELPP's (V) will be made. 

The corresponding theorem dealing with the ratio C is somewhat more involved. As was the 
case for A and B, we require some preliminary results. We introduce the following notation: 

f 1 if e is even, 
0 = \ (4.1) 

[0 if e is odd. 
Lemma 4.6: m = pd (mod 12). 

Proof: Since p = ±1 (mod 6), then m = 1 if e is even, m = p if e is odd (mod 12). 

Note that £(20) = LCM(*(4), k(5j) = LCM(6,4) = 12 and £(20) = 5-12-60. To character-
ize B (mod 20), it suffices to consider all residues/? (mod 12), since B involves Lucas numbers. 
However, to characterize A and C (mod 20), we must consider all residues p (mod 60), since A 
and C involve Fibonacci numbers. From Lemma 4.6, it follows that L^ = Lijp0 (mod 20), for all 

j . Then Properties 2.3(a)-(c) imply the following 

Lemma 4.7: Ae = A$9 Be = B0, Ce = Ce (mod 20). 

Using any standard table of Fu and Lu for 1 < u < 60, along with quadratic reciprocity, we 
next form Table 1 below. 

TABLE 1 

p(mod60) ( | ) ( f ) p> (mod60) Fpi (mod20) L, (mod20) ^ ^ 2 0 ) ^ L%o%0) , ^ ( ^ 2 0 ) 

1 1 
7 - 1 

11 1 
13 - 1 
17 - 1 
19 1 
23 - 1 
2 9 1 

- 2 9 1 
- 2 3 - 1 
- 1 9 1 
- 1 7 - 1 
- 1 3 - 1 
- 1 1 1 

- 7 - 1 
- 1 1 

1 1 
1 - 1 1 

- 1 1 
1 - 1 1 

- 1 - 1 1 
1 1 

- 1 - 1 1 
- 1 1 

1 1 
1 - 1 1 

- 1 1 
1 - 1 1 

- 1 - 1 1 
1 1 

- 1 - 1 1 
- 1 1 

1 ] 
9 ] 
1 ] 
9 J 
9 J 
1 ] 
9 J 
1 ] 
1 ] 
9 J 
1 ] 
9 J 
9 J 
1 J 
9 J 
1 J 

L 1 
L - 7 
L 9 
I - 7 
[ - 3 
[ 1 
I - 3 
[ 9 
[ 9 
[ -3 
i 1 
i - 3 
L - 7 

9 
L - 7 

1 

1 
9 

- 1 
1 

- 9 
9 

- 1 
- 9 

9 
1 

- 9 
9 

- 1 
1 

- 9 
- 1 

1 
- 3 
- 9 
- 7 

7 
9 
3 

- 1 
1 

- 3 
- 9 
- 7 

7 
9 
3 

- 1 

As we may readily verify, using Table 1, AQ = Al = Fp, B0 = Bx = Lp, C0 = Q = F2p (mod 20). 
Then (Fp)2 = Fp2, (Lp)2 = Lp2, and (F2p)2 = F2p2 (mod 20), from which we obtain 
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Lemma 4.8: Ae = AQ, Be = B0, Ce = C0 (mod 20). 

From Lemma 4.8, and by inspection of the entries in Table 1, we obtain the following lemma. 

Lemma 4.9: C = {=A (mod 4). 

We are now ready to state the main theorem regarding C 

Theorem 4.2: C G(X~Y), unless p = 1 or 19 (mo^ 30), in which case C GW. 

Proof: We may suppose that A and B are composite. The following proof needs some 
modification if either A or B is prime. Since AGX and B G X, we-see that Z(^4) = mp\(A - s), 
Z(B) = 2mp\(B-l). Since C-s = AB-€ = (A-e)(B-l) + (A-e) + e(B-l), then /wp^C-*). 
Since mp is odd and C-s is even, we have Z(C) = 2zwp|(C-£). C= AZ? is necessarily com-
posite, S O C G I . 

From Lemmas 4.3, 4.4, and 4.9, we see that 

C = 
s (mod Amp) if £ = M) , 

£ + Imp (mod 4m/?) if s - -\rf\ • 

Then, from Lemma 4.5, we obtain 

\LS = E (modC), if* = ( f ) , 
A:- (**) 

A ^ + f (modC), i fs = - ( ^ ) . 

Now ^4|Fw/7 and5|Z^, clearly. Property 2.3(d) implies that L2mp+£ = -£ (mod A\ while 
•i2i»p+f = s (m°d ^) . Since C= AB, we see that Z ^ ^ # 1 (mod Q. Then (**) implies that 
2^ = 1 (mod C) iff £ = (-3/p) = l. By reference to Table 1, this occurs precisely when p = 1, 19, 
-29, or -11 (mod 60), i.e., when p = 1 or 19 (mod 30). Thus, C GY iff /? = 1 or 19 (mod 30), 
which completes the proof. 

For the special case in which e = 0, we obtain the following corollary. 

Corollary 4.3: F2p G(X-Y), unless p = 1 or 19 (mod 30), in which case F2p GW'. 

This result extends that of Duparc [12] (and of Lehmer [14]) mentioned in Section 3. 
Theorem 4.2 cannot be improved, in the sense that C &U when p = l or 19 (mod 30). To 

see this, first suppose p = 1 or 19 (mod 30), so that s = \. Since C G Xy by Theorem 4.2, we see 
that Z(C) = 2mp\(C-l). Letting C-1 = 2W, where s>\ and d is odd, then 2mp\2d. Thus, 
C\F2mp\F2d- In order for C e£7, it is necessary that either C\Fd or C\Ld. However, A\Fd and 
2?|A/. Since gcd(A,B) = l, it is impossible for either C\Fd or C|4/. Therefore, C&U, as 
claimed. 
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5. CONCLUSION 

No attempt has been made to generalize the results of this paper so as to apply to more gen-
eral second-order sequences. The author is content to confine his investigation to the Fibonacci 
and Lucas sequences and to leave such generalizations to others. It is apparent, however, that 
any such generalizations are easily suggested by the results of this paper. 

Many other areas of research are suggested for the various pseudoprimes discussed in 
Section 2, in some cases leading to fascinating, difficult, and as yet unanswered questions. In 
recent years, due to the application of LPP's to the area of primality testing and public key cryto-
graphy, there has been a tendency to shift the focus of investigation on LPP!s. As this brief 
overview has attempted to indicate, however, there are areas of theoretical interest encompassing 
all of the pseudoprimes defined here. 
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