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1. INTRODUCTION 

Let 3 = {xl,x2,...,xn} be a set of distinct positive integers. By (xi9Xj) and [xf,Xj], we 
denote the greatest common divisor (GCD) and the least common multiple (LCM) of xi and Xj, 
respectively. 

The matrix (S) (resp. [S]) having (xi9 Xj) (resp. [xi9 Xj]) as its z, y-entry is called the GCD 
(resp. LCM) matrix defined on S. 

A set is called factor-closed if it contains every divisor of each of its members. A set S is 
gcd-closed if (xz, Xj) GS for any / andy (1 < /, j <ri). 

Smith [6] and Beslin and Ligh [3] discussed (S) and det(S), the determinant of (S). They 
proved that det(iS) = ^(xx) ... 0(xn), where <f> is Euler's totient, if 3 is factor-closed. Beslin and 
Ligh [4] gave a formula for det(«S) when S is gcd-closed. 

Smith [6] and Beslin [2] considered the LCM matrix [S] when S is factor-closed. In 1992, 
Boueque and Ligh [1] gave a formula for det[5] when S is gcd-closed. They also obtained for-
mulas for (S)~l and [S]~l, the inverses of (S) and [S]. 

Let r be a real number. The matrix {Sr)-{aij), where atj = (xi,xJ)r, is called the GCD 
power matrix defined on S; the matrix [Sr]= (by), where btj =[xiy XjJ, is called the LCM power 
matrix defined on S. 

In this paper the results mentioned above are generalized by giving formulas for (Sr), [Sr], 
det(iS'r), and detf/S""] on factor-closed sets and gcd-closed sets, respectively. Making use of the 
Mobius matrix, which is a generalization of the Mobius function ju, we shall give the inverse 
matrices of (6"") and[S""]. 

All known results about (S) and [$] are just the particular cases of the theory of (Sr) and [Sr] 
on condition that r = 1. 

One of the problems raised by Beslin [2] are solved. Some conjectures are put forward. 

2. JORDAN'S TOTIENT 

For any positive integer n and real r, we define 

P\n\ P J 

The function Jr is usually called Jordan's totient. 

Theorem 1: If n > 1 and r is real, then 

Z ^ = "r- (2-1) 
d\n 
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Proof: By the definition of Jr, when n = p"1 ...plk, 

Jr(n) = nr v^ ftj d\n a d\n \UJ \ PlJ 

Equation (2.2) and the Mobius inversion fonnula give (2.1). D 

3, MOBIUS MATRICES 

Let S = {x1?..., xn} be ordered by xl < x2 < • • • < xn. We define U = (u^), where 

uif = < (3.1) 
[0 otherwise. 

Our purpose is to find M = (fy) = U~l. As S is ordered, J7 is an upper triangular matrix. It 
is well known that the inverse of an upper triangular matrix is also an upper triangular matrix. 
Hence, 

My = K*i, xj) = °> 'lfi > J (Le-> *t > Xj). (3.2) 

Since M - U~l, we have Z£=1 %% = Stj. Using (3.1), 
n 

X/<*i,**) = <V (3.3) 

When / = j , by (3.2) and (3.3), we have 

/<*/,*/) = 1 (i = 1,2,...,/!). (3.4) 

When i < j , by (3.3), we have 

Mij = M*/, *,) = - Z Pi*, xkl (3-5) 

Theorem 2: Function ju(x, y) is multiplicative. 

Proof: /d(x,y) may be written as fi(p°l ...pa
s\ p^ ...pb

s
s), where at > 0, 57 > 0, but a,. + bt > 

0, / = 1,2,..., 5. First, for any a,. > 0 (i = 1,2,..., s), by (3.2) and (3.4), we have 

ju(p? . . .KM)^W,l). . . / ifeM). (3.6) 
Next, we make an inductive hypothesis: 

MiPail -P"/, Pi1 .••Pis) = M(P?\Pfil)-.-M(P:%Pi
s
s), (3-7) 

for (0,..., 0) < (il9..., j,) < (bx, ...,bs), which may be abbreviated (0) < (j) < (b). 
Note that (i1? ...Js) = (bl? ...,bs) means ik=bk, k = 1,2,...,$; (i1?. ..,is)<{bx, ...,bs) means 

ik < bk, and there exists at least a t such that it <bt (l<t<$). 
When (a) * (b), by (3.5) and (3.7), we have 
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M(pai\ph-(Pss,ph/) 

KPV -pas°, pf - P» = - Z Art -P"S> p\l ••• rt) 
(0)<(/)<(6) 

= - Z KPtXJ{)-{pas\P's) 
(0)<(/)<(A) 

=-[(i-ir-iKA°',A
6')-(ft°%^) 

=A(^i,Jp?)-(rf',Jrf'). 
In summing, we consider all combinatorial possibilities of 0 < ik < bk and ik = bk satisfying 

(0) <(/)<(*); also, 

0<ik<bk 

has been used. 
When (a) = (b), by (3.4), we have 

MP? ... Pa/, rf • • • Pb
s°) = i = MW , A*1 ) • • • tttf; pb/) • a 

Theorem 3: The generalized Mobius function 

M(x,y) 
i-iy i£z = Pl...p„s>o, 
1 ifx = y, 
0 otherwise. 

Proof: Let/? be a prime. By (3.2), (3.4), and (3.5), 

M(pm, p") = 0, if m>n; M(pm, pm) = 1; 

M(pm,pm+1) = -M(pm,pm) = -L 
When k > 2, we have 

*>"rt)=-Z*",r) 
0<z<£ 

= - I MiPm,pm+i)~M(Pm,Pm+k-1) 
0<i<k-l 

= MiPm, Pm+k~l) - MiPm, Pm+k~l) = 0. 
These results and Theorem 2 complete the proof. D 

4. GCD POWER MATRICES ON FACTOR-CLOSED SETS 

Let S = {x1? x2, ...,xn} be an ordered set of distinct positive integers, and S = {y1,y2,...,ym}, 
which is ordered by yx < y2 < • • • < ym9 be a minimal factor-closed set containing S. We call S the 
factor-closed closure ofS. 

Theorem 4: Let 5 = {xl9...9x„} be an ordered set of distinct positive integers, and S - {yi,...9ym} 
the factor-closed closure of g. Then the GCD power matrix on S, i.e., 
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(Sr) = E1GrE, (4.1) 
where 

Gr = (BagC/^),..., Jr(ym)\ (4.2) 

* = <*>• *»={<, ort^ise. <43> 

Proof: By (2.1), we have 

= £./r(d) = (*>,*/= ($%.. D 

Theorem 5: Let 5 be factor-closed, then we have 

det(^) = /r(x1).../r(x„). (4.4) 

Proof: When £ is factor-closed, S = S, and the matrix £" is equal to U, which is defined as 
(3.1), and is a triangular matrix with the diagonal (1,1,..., 1). We have 

det(Sr) = (dett/)2 detGr = detGr = Jr(x^ ••• Jr(x„). D 

When S is arbitrary, det(£r) can be calculated by the Cauchy-Binet formula [8]. We omit this 
here for succinctness. 

Remark 1: Letting r - 1 in (4.4), we obtain the well-known results of Smith [6] and of Beslin 
andLigh [3]: 

detOS) = Jfa)... Jx(xn) = ̂ ) ... (f>(xn). 

Remark 2: By (4.1), we have the reciprocal GCD power matrix 

(S~r) = ETG_rE. (4.5) 

Hence, ifS is factor-closed, we have 

det(S-r) = J_r(xl)...J_r(x„), (4.6) 

det(S-1) = J_i(x1)...J_l(x„). (4.7) 

In fact, (4.7) is exactly Corollary 1 of Beslin [2]. It is evident that the function g(n) intro-
duced by Beslin in [2] and by Bourque and Ligh in [1] is none other than Jordan's totient function 
J-M-

5. LCM POWER MATRICES ON FACTOR-CLOSED SETS 

In this section, we shall turn our attention to the LCM power matrix. 

Theorem 6: Let S and £ be defined as in Theorem 4. Then we have the LCM power matrix 

[Sr] = DrETG_rEDr, (5.1) 
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(5.3) 

where 
Dr= diag(x[,...,<), (5.2) 

G_r and E are defined by (4.2) and (4.3). 

Proof: By (4.5), we have 

(DrETG_rEDr)i} = {Dr{S-r)Dr)tj = ^(Dtf 
T T 

Theorem 7: If 5 is factor-closed, then the determinant 

det[Sr] = xlr...x2
n

rJ_r(x1)...J_r(x„) 

= M*) • • • Jr(X>r(Xl) • • • * r(*»)» 

where nr is multiplicative and for the prime power pm, nr{pm) = ~P''• 
Proof: By (5.1) and the fact that E = U,we have 

d e t p ' ^ n ^ - r f o ) a n d ^ / - A ) = -/r(*,K(*,)-
1=1 

This completes the proof. • 

Remark 3: Letting r = 1 in (5.3), we shall have Corollary 3 of Beslin [2] immediately. 

On the basis of (4.4) and (5.3), we have 

Theorem 8: IfS is factor-closed, then 

d ^ = n ^ (54) 

det[S] IK*), (5.5) 
det(S) |=f 

where x(n) is multiplicative, and 7u{pk) = -p, for the prime power pk. 

Remark 4: By (5.4) and (5.5), we know that [S] and [Sr] are not positive definite. 

Remark 5: Let co(x) denote the number of distinct prime factors of x, and £l = G)(x1) + ~- + 
co(xn). By Theorem 8, we know that det[5] and det[Sr] are positive, if O is even; they are nega-
tive if O is odd, for factor-closed S. This solves the second of the problems put forward by 
Beslin in [2]. 

6. INVERSES OF (Sr) AND [Sr] ON FACTOR-CLOSED SETS 

In Section 3, we obtained M = (ju(xl9 x.)) = U~l. Now we shall give OS"")"1 and [Sr]~l, the 
inverses of (Sr) and [5"*], respectively. 
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Theorem 9: Let S be factor-closed, then (Sr) l = (afJ) and [Sr] 1 = (Z^), where 

** = I 
[Xi,Xj]\xk\Xi J 

\r( Y 

VX/y 
KXj>xMxj,xk) 

Jr(xk)7Tr(xk) 

Proof: When 5 is factor-closed, we have E = U. By (4.1), 

(6.1) 

(6.2) 

% = (U-1G;\U-1)T\ = (MG;1M% 

= lE,Mik(Jr(Xk)YlMjk= Z 
[*V.«/]|** fc=l Jr(Xk) 

By (5.2), we have 

bv = (D;1U-1G:XU-1)TD;% = {D;1MG^MT^\ 

= 2 ^ AtC -̂rC**)) /*j**y = T T L T77^ 

= z 
[*,-,X/]l*jfc 

f Y 

V V 

Kxi,Xk)Kxj>Xk) 
Jr(xk)7Tr(xk) 

. D 

Remark 6: Theorem 9 is a generalization of Theorems 1 and 2 of Bourque and Ligh [1]. 

7. 0T) AND [Sr] ON GCD-CLOSED SETS 

Let ar(xiX / = 1,2,..., w, be defined by 

rf|xy 

x,<xf-

(7.1) 

Using the principle of cross-classification [7] and (2.1), we can prove 

Theorem 10: Let S - {xl9 x2, ...,xn} be ordered by xx < x2 < ••• < JC„ and let ar(X) be defined by 
(7.1). Then 

ar{xi) = xf;- ^(xj9xiy+ Yt^j^k^iY--• 
+ (rl)i~l(?ci,x2,...9xiy, i = !,...,«. 

Theorem 11: Let *S be gcd-closed, then 

(Sr) = UTArU9 (7.3) 
[51 = Dr[/^_r[/Dr, (7.4) 

where 4- - diag(ar(xx),..., ar(xn)), C/andDr are defined in (3.1) and (5.2), respectively. 
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Proof: The proof of (7.3) is simple. We shall prove only (7.4). 
n 

(DrUTA_rUDr)v =Y,XiUkia-r(xk)%xrj = xixj Yl
a-riXk) 

k=\ Xfe\xi 
Xk\Xj 

= XfXJ Z yLJ-r<ft) = t*J I J-rW 
xk\(xt,Xj) d\xk d\{xt,Xj) 

dHxt 
xt<xk 

= txr
J/(xl,xJy=[Xl,xJy=[sriJ. D 

On the basis of Theorem 11, it is easy to prove 

Theorem 12: Let S be gcd-closed, then 

tet{Sr) = f[ar(xi\ (7-5) 

det[^] = n ^ a _ r ( * i ) . (7.6) 

Remark 7: Letting r = 1, equation (7.5) becomes Corollary 1 of Beslin and Ligh [4] and equation 
(7.6) becomes Theorem 5 of Bourque and Ligh [1]. 

8. INVERSES OF (Sr) AND [Sr] ON GCB-CLOSED SETS 

When S is gcd-closed, the inverse matrices (Sr)~l and [S^'1 can be derived easily from Theo-
rem 11. For future reference, we present the formulas without proof. 

Theorem 13: Let S be gcd-closed, then 

(5T' = (%) and [ST1 = (4,), 
where 

M(xi, xk)Kxj, xk) 

[Xi,Xj]\xk 
« ^ ar(xk) 

d=— y ^Xk)^xPXk>) ( 8 2 ) 
XiXj [xi9Xj]\xk &-r\Xk) 

Remark 8: We make the following conjectures, which are similar to the conjecture of Bourque 
and Ligh [1]: 
1. If S is gcd-closed and r * 0, the LCM power matrix [Sr] is invertible. 
2. Let S = {xly x2,..., x„} be an ordered set of distinct positive integers and r ^ 0, then 

1 
•*77 !< /<» V * 7 J •*-«/ \<i<j<n \ X h Xj> Xn) \X1> X2-> • ••? Xn) 

- * 0 . 
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J* Let A = {ah a2,..., an) be a set of distinct positive integers and at > 1 (i = 1,..., n\ r * 0, then 

\<i<n \<i<j<n 
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FIBONACCI ENTRY POINTS AND PERIODS FOR PRIMES 
100,003 THROUGH 415,993 

A Monograph 
by Daniel C. Fielder and Paul S* Bruckman 

Members, The Fibonacci Association 

In 1965, Brother Alfred Brousseau, under the auspices of The Fibonacci Association, compiled a two-
volume set of Fibonacci entry points and related data for the primes 2 through 99,907. This set is currently 
available from The Fibonacci Association as advertised on the back cover of The Fibonacci Quarterly. Thirty 
years later, this new monograph complements, extends, and triples the volume of Brother Alfred's work 
with 118 table pages of Fibonacci entry-points for the primes 100,003 through 415,993. 

In addition to the tables, the monograph includes 14 pages of theory and facts on entry points and their 
periods and a complete listing with explanations of the Mathematica programs use to generate the tables. As 
a bonus for people who must calculate Fibonacci and Lucas numbers of all sizes, instructions are available 
for "stand-alone" application of a fast and powerful Fibonacci number program which outclasses the stodc 
Fibonacci programs found in Mathematica. The Fibonacci portion of this program appears through the kind-
ness of its originator, Dr. Roman Maeder, of ETH, Zurich, Switzerland. 

The price of the book is $20.00; it can be purchased from the Subscription Manager of The Fibonacci 
Quarterly whose address appears on the inside front cover of the journal. 
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