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1. INTRODUCTION 

The problem of determining which integers k are equal to the sum of the digits of Fk was first 
brought to my attention at the Fibonacci Conference in Pullman, Washington, this summer (1994). 
Professor Dan Fielder presented this as an open problem, having obtained all solutions for 
k < 2000. There seemed to be fairly many solutions in base 10, and it was not clear whether there 
were infinitely many. Shortly after hearing the problem, it occurred to me why there were 
so many solutions. If one assumes that the digits Fk are independently uniformly randomly 
distributed, then one expects S(k), the sum of the digits of Fk, to be approximately -|Mog10a, 
where a = y(l + V5) « 1.61803 is the golden mean. Since flog10 a « 0.94044, we expect S(k) « 
0.94044A:. Since this is close to k, we expect many solutions to S(k) - k, at least for reasonably 
small k. However, as k gets large, we expect S{k)l k to deviate from 0.94044 by less and less. 
Thus, it appears that, for some integer JTQ, the ratio S{k)l k never gets as large as 1 for k > «Q, SO 
S(k) = k has no solutions for k > /%, and thus has finitely many solutions. In this paper, I present 
two closely related probabilistic models to predict the number of solutions. More generally, they 
predict N(b; n), the number of solutions to S(k; b)-k for k <n, where S(k; b) is the sum of the 
digits of Fk in base b [thus, S(k; 10) = S(k)}. Let N(b) denote the total number of solutions in 
base b [thus, N(b;n)->N(b) as w-»oo]. Both models predict finite values of N(b) for each 
base b. In the simpler model, #(10) is estimated to be 18.24 ±3.86, compared with the actual 
value #(10; 20000) = 20. 

2. THE NAIVE MODEL 

In this model I assume that the digits of Fk are independently uniformly randomly distributed 
among {0,1,..., b-l) for each positive integer k and each fixed base b > 4. [It is fairly easy to 
prove that the only solutions to S(k; b) = k are 0 and 1 when b = 2 or 3. The proof involves 
showing that, for all sufficiently large k, we have (b -1)(1 + log^T^) < k.] Now let a - ~ (14- V5) 
andjff = | ( l - V 5 ) . Then 

„ ak-Bk ak
 /1X r 7 

k= Vs =75+°^ {ork~^co' 
The number of digits of Fk in base b is approximately the base-Z? logarithm of this number, 

k \ogb a - log^ V5 &k log6 a-ky, where y - \o%h a and I neglect terms of order 1. In this 
model, the expected value of each digit of Fk is \{b-\) and the standard deviation (SD) is 
Jj2(b2 -1) (see [2], pp. 80-86). Therefore, the expected value of S(k; b) is approximately S = 
y (b - X)y and the SD is approximately a = ^(b2 - l)y . Let SP^A; £) denote the probability that 
S(k;b) = £, where S(k;b) is distributed as the sum Yk^+Yki2 + ->+Yk^kr], the YkJ being 
independent random variables, each uniformly distributed over {0,1,..., b-l}. According to the 
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central limit theorem ([2], pp. 165-77), if k is reasonably large, the probability distribution is 
approximately Gaussian, so 

i 
<j*Jln exp 

<s-i)2 

2a2 kny(b2-\) exp 
-6(M¥H) 

ky(b2-l) 

Let <S>
l(k) = '3i

l(k; k); this is the estimated percentage of Fibonacci numbers Fk, for k' near k 
whose base-ft digits sum to the index k'. We have ty^k) « Ae~Bk 14k, where 

6(r(¥)~i)2 

^r(ft2-i) 
and 5 = 

r(b2-\) 
Incidentally, it is clear that the only solutions k for which Fk < b are those for which Fk - k, 
namely 0, 1, and possibly 5 (if b > 5). We might as well put in these solutions by hand. Thus, 
in the model, we only calculate &i(k) for k for which Fk > b and add N0 to the final result 
upon summing the probabilities, where N0 = 3 if Z> > 5, otherwise N0=2. Thus, our estimate for 
N(b; n) in this model is 

Ae~Bk 

k<n 
Fk>b 

k<n 
Fk>b 

and the standard deviation of this estimate is [assuming that the S(k, b) are uncorrected for 
different values of k] 

\(b;n)= I^iWO-PiW) 
k<n 

F„>b 

Ae-B\4k-Ae~Bk) 
k 

This model gives good results for some bases, but not all. The next model is an improvement 
which seems to yield accurate results for all bases. 

3. THE IMPROVED MODEL 

In this model, I still assume that the digits of Fn are uniformly distributed over {0,1,..., b -1}, 
but with one restriction, namely, their sum modulo b-l. It is well known that the sum of the 
base-10 digits of a number a is congruent to a mod 9. In general, the same applies to the sum of 
the digits in base b modulo b-l. Thus, we have the restriction S(k;b) = Fk (modi-1). In par-
ticular, k cannot be a solution to S(k; b) = k unless k = Fk (modi -1) . This latter equation is not 
too difficult to solve. Upon solving it, we end up with a restriction of the form 

kmo&q^S. (1) 

Here, q - [b -1, p], where p = per(Z? -1) is the period of the Fibonacci sequence modulo b-l and 
S is a specified subset of {0,1,..., q-1}. If k does not satisfy the above condition, it need not be 
considered, since the sum of its digits cannot equal Fn. On the other hand, if k does satisfy the 
condition, we know that the sum of its digits is congruent to Fn modulo b-l. In the improved 
model, we take this restriction into account and otherwise assume a uniform random distribution 
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of digits in Fn. In analogy to S(k; b), let S(k; b) be distributed as the sum Yk x + • • • + Ykt[kr], the 
YkJ being random variables uniformly distributed over 0, 1, ..., b-l and independent except for 
the restriction that Ykl + • • • + Yk[kyl = Fk (modb-l). We now estimate the probability 2P2(£) that 
S(k; b) = k to be b -1 times our earlier estimate in the case where k satisfies (1) and zero other-
wise, i.e., 

2{ ) (0 kmodqtS. 
Thus, in this model, the expectation and SD of N(b; n) are approximately 

„ „ Ae~Bk 

N2(b;n) = N0+^2(k)«N0+(b-l) £ ^ -
k<n k<n V / t k<n k<n 

Fk>b Fk>b 
kmodqeS 

and 

A#;»)= 11 ya(*Xi-*»(*))« P-i) I ^ " a ( ^ Ae~Bk>> 
k<n % k<n 

lFk>b \\ Fk>b 
k mod q eS 

As an example of how to calculate S, consider b - 8. In this case, p = per(7) = 16 and q = 
[7,16] =112. To determine £, we first tabulate ^ mod 16 and Fk mod 7 for each congruence class 
of k mod 16. Next, below the line, we tabulate the unique solutions modulo 112 to the 
congruences x = k (mod 16) and x = Fk (mod 7). Since (16,7) = 1, by the Chinese Remainder 
Theorem, each of these solutions exists and is unique. 

Jtmodl6 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
F^mod7 0 1 1 2 3 5 1 6 0 6 6 5 4 2 6 1 
i m o d l l 2 0 1 50 51 52 5 22 55 56 41 90 75 60 93 62 15 

Thus, S = {0,1,5,15,22,41,50,51,52,55,56,60,62,75,90,93}. Note that, in this example, the pair 
of congruences k = j (modp) and k = Fj mod b-l has a solution mod q for every integer j mod 
p. This is because , in this example, b -1 = 7 and p = l6 are coprime. In general, this is not the 
case. For example, for b = 10, we get p = 24, which is not coprime to b-l = 9. Thus, if we 
constructed a similar table for 6 = 10, we would expect to get some simultaneous congruences 
without solutions. This is in fact the case, i.e., the pair of congruences k = 2 (mod 24) and 
k = F2 = l (mod 9) has no solutions. We expect only one-third (eight) of them to have a solution, 
since (9,24) = 3. In fact, we do get eight. For b = 10, we find S = {0,1,5,10,31,35,36,62} and 
q = 72.' 

One might wonder by about how much N^k; b) and N2(k; b) differ. To first order, they 
differ by a multiplicative factor depending on b, i.e., N2(b;n)^M(b)Nl(b^n). Recall that in 
going from the first model to the second, we selected s out of every q congruence classes modulo 
q, where s = #S. Also, we multiplied the corresponding probabilities by b-l. Thus, M(b) = 
(b - T)s/q. For some bases, M(b) = 1, so the predictions of both models are essentially the same. 
This is true in particular whenever b-l and p are coprime, and also in some other cases, like 
b = 10. However, there are other bases for which M(b) ^ 1; in fact, the difference can be quite 
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large! For instance, for £ = 11, we find p = q = 60 and s=14, hence Af(ll) = 10x14/60 = 7 /3 , 
which is greater than 2. Thus, for b -11, the second model predicts over twice as many solu-
tions to S(k; 11) = k as the first model. In this case, as we will see, the second model agrees well 
with the known data; the first does not. 

4. COMPARISON OF MODELS WITH "EXPERIMENT" 

Every good scientist knows that the best way to test a model or theory is to see how well 
its predictions agree with experimental data. In this case, my "experiment" was a computer 
program I wrote and ran on my Macintosh LCII to determine S(k; b) given k < 20000 and 
b < 20. Incidentally, it is not necessary to calculate the Fibonacci numbers directly, only to store 
the digits in an array. Also, only two Fibonacci arrays need to be stored at one time. Neverthe-
less, trying to compute for k > 20000 presented memory problems, at least for the method I used. 
Still, this turned out to be sufficient for determining with high certainty all solutions to S(k; b) = k 
except for b - 11. 

Here I present all the solutions I found for 4 < b < 20 and k < n. 
b=4, 

h=5, 

b=6, 

6=7, 

b=8, 

b=9, 

6=10, 1 

b=ll, 1 

n=1000: 

n=1000: 

n=1000: 

n=1000; 

n=1000: 

n=5000: 

n=20000: 

n=20000: 

0 

0 

0 

0 

0 

0 

0 
175 
540 

0 
61 
269 
617 
889 
1405 
1769 
2389 
2610 
3055 
3721 
4075 
5489 
6373 
7349 
8017 
9120 
9935 
12029 
14381 
16177 
17941 
18990 

180 
946 

1 
90 
353 
629 
905 
1435 
1793 
2413 
2633 
3155 
3749 
4273 
5490 
6401 
7577 
8215 
9133 
9953 
12175 
14550 
16789 
17993 
19135 

5 

5 

5 

5 

5 
216 
1188 

5 
97 
355 
630 
960 
1501 
1913 
2460 
2730 
3209 
3757 
4301 
5700 
6581 
7595 
8341 
9181 
10297 
12353 
14935 
16837 
18193 
19140 

9 

7 

22 

29 

10 
251 
2222 

13 
169 
385 
653 
1013 
1620 
1981 
2465 
2749 
3360 
3761 
4650 
5917 
6593 
7693 
8495 
9269 
10609 
12461 
15055 
17065 
18257 
19375 

15 

11 

41 

77 

31 
252 

41 
185 
397 
713 
1025 
1650 
2125 
2509 
2845 
3475 
3840 
4937 
6169 
6701 
7740 
8737 
9277 
10789 
12565 
15115 
17237 
18421 
19453 

35 

12 

149 

35 
360 

53 
193 
437 
750 
1045 
1657 
2153 
2533 
2893 
3485 
3865 
5195 
6253 
6750 
7805 
8861 
9535 
10855 
12805 
15289 
17605 
18515 
19657 

53 

312 

62 
494 

55 
215 
481 
769 
1205 
1705 
2280 
2549 
2915 
3521 
3929 
5209 
6335 
6941 
7873 
8970 
9541 
11317 
12893 
15637 
17681 
18733 
19873 

72 
504 

60 
265 
493 
780 
1320 
1735 
2297 
2609 
3041 
3641 
3941 
5435 
6361 
7021 
8009 
8995 
9737 
11809 
13855 
15709 
17873 
18865 
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b=12, n=20000: 

b=13, n=5000: 

b=14, n=3000: 

b=15, n=2000: 

b=16, n=2000: 

6=17, n=1000: 

b = 18, n=1000: 

b=19, n=1000: 

b=20, n=1000: 

0 1 5 . 13 14 89 96 123 
221 387 419 550 648 749 866 892 
1105 2037 

0 1 5 12 24 25 36 48 
53 72 73 132 156 173 197 437 
444 485 696 769 773 

0 1 
192 194 

11 27 34 181 

10 60 101 

60 

31 36 

21 22 

Next, I tabulated Nl(b;n)±Al(b;n)J N2(b;n)±A2(b;n), N(b\ri), ( ^ ) log 6 a , and M(b) for the 
above pairs (b, ri). Note how N(b; n) Increases as (-^)log6 a approaches 1. 

b n JVi(6;n)±Ai(6;n) N2{b\ n) ± A2(6; n) N(b;n) ( ^ ± ) l o g 6 a M(b) 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

1000 
1000 
1000 
1000 
1000 
5000 

20000 
20000 
20000 

5000 
3000 
2000 
2000 
1000 
1000 
1000 
1000 

2.25 ±0.49 
2.67 ±0.79 
4.17±1.05 
5.10±1.41 
6.61 ±1.85 
9.40 ±2.48 
18.24 ±3.86 
79.71 ±8.72 
17.03 ±3.71 
9.71 ±2.56 
7.15±2.01 
5.93 ±1.69 
5.21 ±1.47 
4.75 ±1.31 
4.42 ±1.18 
4.10 ±1.08 
4.01 ±1.00 

2.43 ±0.61 
2.76 ±0.72 
5.04 ±1.25 
6.18 ± 1.42 
5.84 ±1.47 
8.57 ±2.09 
17.77 ±3.46 ' 

180.95 ±12.82 
17.01 ±3.28 
15.73 ±3.08 
8.22 ± 1.62 
4.70 ±1.19 
7.16 ± 1.62 
3.94 ±0.90 
4.69 ± 1.06 
4.12 ±0.95 
4.54 ±0.97 

2 
2 
6 
7 
5 
7 

20 
183 

18 
21 
10 
3 
6 
3 
4 
5 
5 

0.52068 
0.59799 
0.67142 
0.74188 
0.80995 
0.87604 
0.94044 
1.00340 
1.06510 
1.12566 
1.18522 
1.24387 
1.30170 
1.35877 
1.41515 
1.47088 
1.52601 

1.00 
1.00 
2.00 
1.50 
1.00 
1.00 
1.00 
2.33 
1.00 
2.00 
1.00 
1.00 
2.00 
1.00 
1.00 
1.50 
1.00 

As one can see, the first model does not make accurate predictions for each base. In particu-
lar, its predictions for bases 11 and 13 are off by roughly 12 and 4.5 standard deviations, respec-
tively. On the other hand, the second model seems to agree well with the known data for each 
base. For 12 out of 17 bases, its predictions are correct within one SD, and all 17 predictions are 
correct within two SD's. (The largest deviation, found for b = 13, is -1.71 SD's.) Furthermore, 
there does not seem to be a directional bias of the model. Eight out of 17 of the predicted values 
are too high; the other 9 are too low. Thus, the second model looks good. 
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5. PREDICTING THE UNKNOWN 

With this in mind, we can use the second model to make predictions for which we are unable 
to calculate at present. In particular, we can estimate JV(1 1), the total number of solutions to 
S(k; 11) = k in base 11, as well as the value of the largest one. We can also estimate the proba-
bility that we missed some solutions in each of the other bases we looked at. For these bases, I 
was careful to calculate out to large enough n so that these probabilities should be very small. 

I calculated N2(l 1; n) ± A2(l 1; n) for 200000 < n < 4000000 in intervals of 200000. Here are 
the results: 

n 

200000 
400000 
600000 
800000 

1000000 
1200000 
1400000 
1600000 
1800000 
2000000 
2200000 
2400000 
2600000 
2800000 
3000000 
3200000 
3400000 
3600000 
3800000 
4000000 

7 V 2 ( l l ; n ) ± A 2 ( l l ; n ) 

490.38 ±21.70 
595.89 ±24.00 
641.02 ±24.93 
662.32 ±25.35 
672.83 ±25.56 
678.16 ±25.66 
680.91 ±25.71 
682.34 ±25'.74 
683.10 ±25.76 
683.50 ±25.77 
683.72 ±25.77 
683.83 ±25.77 
683.89 ±25.77 
683.93 ±25.77 
683.94 ±25.77 
683.95 ±25.77 
683.96 ±25.77 
683.96 ±25.77 
683.96 ±25.77 
683.97 ±25.77 

As can be seen, the results converge rapidly for large n. Let N'Qr, n) denote the estimated 
number of solutions to S(k; b) = k for k > n. Then we have 

M^ A V Ae~Bk *ss^Ae~M M(b)A C e~Xdx 

k mod q eS 

where I make the change of variables y = V* in the integral to get the error function term. In the 
last step, I use an asymptotic expansion of erfc [1]. 

I next tabulated N'{b;ri) for the pairs (ft, n) used, except for ft = 11, where I used n = 
4000000, the largest n for which I have estimated N(b; n). Since N' is much less than 1 in each 
case, the values of N' listed are the approximate probabilities that there is a solution to 
S(k; ft) = k for k > n. I also tabulated the corresponding values of A, B, and M(ft). Note that for 
every base less than 20, except 11, N'Qr, n) is less than 10"6; in fact, the sums of these entries is 
roughly 10"6. Thus, if this model is accurate, there is about one chance in a million that I have 
missed any solutions in these bases. Also, note that the table of estimates of N2(ll\n) can be 
used to estimate the largest solution to S{k; 11) = k. 
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b 

4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

n 

1000 
1000 
1000 
1000 
1000 
5000 

20000 
4000000 
20000 
5000 
3000 
2000 
2000 
1000 
1000 
1000 
1000 

A 

0.606 
0.516 
0.451 
0.401 
0.362 
0.330 
0.304 
0.282 
0.263 
0.246 
0.232 
0.219 
0.208 
0.198 
0.188 
0.180 
0.172 

B 

2.65 x lO"1 

1.35 x lO"1 

6.89 x 10"2 

3.37 x lO"2 

1.49 x 10"2 

5.26 x 10"3 

1.03 x 10~3 

2.89 x 10"6 

9.18 x 10"4 

3.01 x-10-3 

5.79 x 10"3 

8.97 x 10"3 

1.23 x 10"2 

1.58 x 1Q~2 

1.92 x 10~2 

2.26 x 10~2 

2.59 x 10~2 

M(b) 

1.000 
1.000 
2.000 
1.500 
1.000 
1.000 
1.000 
2.333 
1.000 
2.000 
1.000 
1.000 
2.000 
1.000 
1.000 
2.000 
1.000 

N'(b;n) 

7.6 x lO"117 

2.5 x 10"60 

4.7 x 10"31 

1.3 x 10"15 

2.7 x 10"7 

2.3 x 10~12 

2.4 x 10~9 

1.1 x 10~3 

2.1 x 10~9 

6.8 x 10~7 

1.6 x 10~8 

7.2 x 10-9 

1.7 x 10"11 

5.5 x 10~8 

1.4 x 10~9 

5.2 x 1 0 ~ n 

1.1 x 10~12 

Suppose one wishes to find n such that there is a 50% chance that there are no solutions 
larger than n. According to Poisson statistics, this happens when the JV2(11; n) = In 2 « 0.69. By 
interpolatmg in the previous table, we see that this occurs when n « 1.9 x 106; this is roughly the 
value we can expect for the largest solution. Calculating S(k; 11) for Jc up to 2.8 x 106 yields a 
96% probability of finding all the solutions, and going up to 4 x 106 yields a 99.9% probability of 
finding them all. Perhaps someone will do this calculation in the near future. 
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