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1. INTRODUCTION 

A binary decision diagram (BDD) is a directed graph representation of a switching function 
f(xly x2,...,xn). Subfunctions of/ correspond to nodes in the BDD; /itself is represented by a 
source node, i.e., a node with no incoming arcs. Attached to this node are two outgoing arcs, 
labeled 0 and 1, that go to descendent nodes representing /(x1,x2,. . . ,0) and f(xt,x2,..., 1), 
respectively. Attached to each of these nodes are descendent nodes, where xn_x is replaced by 0 
and 1, etc. This process is repeated until all variables are assigned values. The last assigned func-
tions are a constant 0 and 1, which correspond to sink nodes, i.e., nodes with no outgoing arcs. If 
two nodes represent the same function, they are merged into one node, and if the descendents of 
one node 77 are the same, 77 is removed. If / = 1 (0) for some assignment of values to x1? x2,..., 
and xn, then there is a path in the BDD for/from the source node to the sink node 1 (0) for that 
assignment. Figure 1(a) shows the BDD of the OR function on four variables. As is usual, the 
arrows are omitted; all arcs are assumed to be directed down. As can be seen, there is a path 
from the source node to the node labeled 1 if and only if at least one variable is 1. Figure 1(b) 
shows the BDD of the AND function of four variables, which is the mirror image of the OR 
function BDD. 

x3 

x
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xi 

FIGURE 1. BDD?s of the OR and AND Function on Four Variables 

There is significant work on this topic dating back to 1959 [5]. In spite of this, there are few 
enumerations of nodes in BDD's of useful classes of functions. Symmetric functions, which are 
unchanged by a permutation of variables, have received some attention. The worst case number 
of nodes is known [3], [6], [7], as well as the average number of nodes [1]. 
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We demonstrate another class of functions and characterize its BDD. A threshold function, 
f(xl,x2,...,xn), has the property that / = 1 if and only if wnxn + wn_lxn_l + ••• +wlxl > J , where 
wf and T are integers and the logic values, 0 and 1, of xt are viewed as integers. The value 
of ww*„+w„_i*>7--iH—+wixi> f°r some assignment of values to xl,x2,..., andxw, is called 
the weighted sum. A threshold function is completely specified by a weight-threshold vector 
(wn,wn_h...,wl; T). For example, the four-variable OR and AND functions have weight-threshold 
vectors (1,1,1,1; J) , where 7 = 1 and 4, respectively. A Fibonacci function is a threshold function 
with weight-threshold vector (Fn, Fn_x,..., F2, Fx; T), where Ft is the Ith Fibonacci number and 
0 < T < Fn+2. For example, the Fibonacci functions associated with weight-threshold vectors 
(3,2,1,1; 1) and (3,2,1,1; 7) correspond to the OR and AND function, respectively, on four vari-
ables. The BDD of a Fibonacci function is a BDD in which a path from the source node to a sink 
node is a sequence of arcs associated with variables of descending weights. Figure 2 shows the 
BDD's of all of the other four-variable Fibonacci functions, which have a weight-threshold vector 
(3,2,1,1; T), for 1 < T < 7; thus, Figures 1 and 2 represent the entire set of seven four-variable 
Fibonacci function BDD's. 

o l 
(3,2,1,1:4) 

FIGURE 2. BDDfs of Other Fibonacci Functions on Four Variables 

The representation of a Fibonacci function by a BDD is related to the representation of inte-
gers by the Fibonacci number system, for which there exist many papers (see, e.g., [2], [4]). That 
is, every positive integer N can be represented as N = anFrj + '- + a2F2 + alFl, where Ft is a 
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Fibonacci number and ai e {0,1}. In a BDD, there is a path from the source node to 1 for all 
assignments of values to at, for 0 < i < n, such that N>T. 

2. STRUCTURE OF THE BDD?S OF FIBONACCI FUNCTIONS 

In preparation for the calculations of the average number and variance of nodes in BDD's of 
Fibonacci functions, we consider the structure of such BDD's. Figure 3 shows how the structure 
near the source node depends on the threshold. Specifically, it shows that the destination of arcs 
emanating from the source node depends on the value of xn. Figure 3 a shows the Type a struc-
ture. As shown, if 0 < T < Fn, the arc corresponding to xn = 1 goes to 1. That is, for this range of 
T and this value of xn, the weighted sum exceeds or equals the threshold, and / = 1. If xn = 0, 
then the weighted sum exceeds or equals the threshold if and only if the Fibonacci function corre-
sponding to the weight-threshold vector (Fn_l9 Fn_2y..., Fx\ T) is 1. The latter is represented by a 
node that is the 0 descendent of the source node. 

Type a Type b Type c 

§ 1 0 1 § 1 
®<T<Fn Fn<T<Fn+1 Fm+1*T<Fm+2 

(a) (b) (c) 

FIGURE 3. Structure of the BDD of a Fibonacci Function 

A similar analysis of the case Fn+l < T < Fn+2, which corresponds to a Type c structure, shows 
that there is mirror image symmetry with a Type a structure, as can be seen by comparing Figure 
3(c) with 3(a). 

Consider the remaining values of T, which correspond to a Type b structure. Figure 3(b) 
shows that, for this structure, both xn = 0 and xn-\ yield nodes at the next lower level. If 
xnxn-i = 11? the weighted sum is at least Fn+Fn_x = Fn+l, and this equals or exceeds the threshold 
regardless of the values of the remaining variables. Thus, there is a path from the source node to 
1 for xnxn_x = 11. If xnxn_x = 00, the weighted sum can be no greater than Fn_2+Fn_3 + ••• + 
Fl=Fn-l. Thus, the threshold is neither equaled nor exceeded, and there is a path from the 
source node to 0. If xnxn_x = 0l, the weighted sum ranges from a minimum of Fn_x to a 
maximum of Fn_x + Fn_2 + -" + Fl= Fn+l -1, for which / = 0 and 1, respectively. It follows that 
there is a path from the source node to a non-sink node corresponding to xnxn_x = 01. A similar 
analysis shows that there is a non-sink node corresponding to xn%n_i = 10. Similarly, non-sink 
nodes exist for xnxn_lxrlr_2 = 011 and for xnxn_lxn_1 = 100. Indeed, since Fn_l+Fn_2 = Fn, the 
weights are the same for the last two cases, and they correspond to the same node. 

A fourth type of structure, the Type d structure, consists of a node that has as descendents 
the two sink nodes 0 and 1. This represents the Fibonacci function with weight-threshold vector 
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(1; 1). Indeed, all threshold functions contain this structure. As can be seen in Figures 1 and 2, it 
is part of all BDD's of Fibonacci functions on four variables. 

Composing BDD's of Fibonacci Functions 
Consider combining structures. If a BDD has a Type a structure, as shown in Figure 3(a), 

and the weight-threshold vector associated with the Fibonacci function of the source node is 
(Fn, Fn_v ..., jpj; T), where 0<T<Fn, then the node that is the 0 descendent of the source node 
corresponds to a Fibonacci function with weight-threshold vector (Fn_h Fn_2,..., Fx; T). Further, 
the 0 descendent can also have a Type a structure, in which case the node at xnxn_x = 00 is 
associated with the weight-threshold vector (Fn_2,Fn_3,...9Fl; T). Indeed, this process can be 
repeated until the last variable, which has a Type d structure. Represent this composition as ad, 
for i > 1, and the set of all such compositions as aa*d. Here, a* = {X, a, aa, acta,...}, where X is 
the null structure. Thus, aa*d represents the concatenation of one or more Type a structures 
followed by a Type d structure. By this convention, the right to left sequence in the string 
representation corresponds to the top to bottom sequence in the BDD. Such compositions occur 
only when T=l, which is the OR function. For example, the BDD in Figure 1(a) is described by 
a d and corresponds to the weight-threshold vector (3,2,1,1; 1). 

In a similar manner, repeated use of the Type c structure corresponds to a BDD described by 
cd, for i > 1, producing a mirror image of ad. Such compositions occur only when T' - Fn+2 - 1 , 
which is the AND function. For example, the BDD in Figure 1(b) is described by c d and corre-
sponds to the weight-threshold vector (3,2,1,1, 7). 

Consider combining Types a and c. For example, let the source node have a Type a structure 
and its 0 descendent have a Type c structure. Thus, the 0 descendent of the source node is asso-
ciated with weight-threshold vector (Fn_v Fn_2,...,Fl; 7J), where 0<Tl = T<Fn. But, because it 
is a Type c structure, we have Fn<Tt <Fn+l. Since there is only one value of Tx that satisfies 
both inequalities, it follows that T=T{= Fn. It follows that the weight-threshold vector of the 1 
descendent of the 0 descendent of the source node is (Fn_2,Fn_3,..., Fl;Fn_2)9 since Fn_2 = 
Fn-Fn_x. Thus, this node has a Type a structure whose 0 descendent has a Type c structure, etc., 
until all variables are exhausted. The resulting compositions are described by ac{ac)*{a + X)d, 
where + is set union. A similar result occurs if the source node has a Type c structure, in which 
case the resulting compositions are described by ca(ca)*(X + c)d. These observations have 
important implications in the composition of the BDD's of Fibonacci functions. 

• A BDD can consist of a sequence of one or more Type a structures followed 
by an alternating sequence of Type c and Type a structures, as described by 
a*(ca)*(A + c)d. Similarly, a BDD can consist of a sequence of one or more Type c 
structures followed by an alternating sequence of Type a and Type c structures, as 
described by c*(ac)*(a + X)d. As an example, see the BDD's in Figures 1 and 2 
corresponding to thresholds T=l,2,3,5,6, and 7. 

• A "crest" pattern of the form shown in Figure 3(b) can only occur after a sequence 
of Type a structures exclusively or Type c structures exclusively. On the contrary, if 
both types occur, we have a situation as described immediately above, in which case, 
no crest can occur anywhere in the BDD. 
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Consider the composition of the BDD's of Fibonacci functions involving the crest pattern; 
i.e., Type b structures. Figure 4 shows how the BDD structure depends on T in the range 
Fn < T <Fn+v Here, the top node of the crest pattern is the source node of the BDD. It is 
interesting how the structure changes at the boundary between ranges and that Fibonacci numbers 
define these boundaries. In the BDD for T = Fn + Fn_3 and Fn +Fn_2, the bottom node of the 
crest corresponds to a weight-threshold vector where the threshold is Fn_3 and Fn_2, respectively. 
From the discussion above, this part of the BDD consists of a sequence of structures chosen 
alternatively as Type a and Type c. Again, the mirror image symmetry of the BDD's of Fibonacci 
functions is evident. 

Type bj Type b2 Type b3 Type b4 Type b5 

0 O 1 x
n-2 U / ^ V f \ ^ Xn-2 

I xn-3 i J \ 1 X*-3 # y \ j *W J" O 0 1 / n~J MM f!'J 0 oJ> 
? N 1 / \ ' » 

T = Fn+Fn_3 T = Fn + Fn_2 

Fn<T<Fn + Fn_3 Fn + Fn_3<T<Fn+Fn_2 Fn + Fn_2 < T < Fn+l 

(a) (b) (c) (d) (e) 

FIGURE 4 Structure of the BDB of a Fibonacci Function in the Range Fn<T< Fn+1 

3. THE AVERAGE NUMBER OF NODES IN BBDf S OF FIBONACCI FUNCTIONS 

Let T(x, y) be the ordinary generating function for the number of BDD's of Fibonacci func-
tions, where x tracks the number of variables andj tracks the number of nodes. Let tnJ be the 
number of BDD's of w-variable Fibonacci functions that have / nodes. From the results in the 
previous section, it follows that if tnJ > 0, then i > n + 2, since there is at least one node for every 
variable and two sink nodes 0 and 1. Thus, a term in T(x, y) is 

T(x,y) = -+x"(tn,n+2y"+2
 + t„!„,4y"+*+ •••) + - . (1) 

Note that tnn+2i+\ = 0 for / = 1,2,..., since additional nodes beyond the minimum number n + 2 
occur because each crest pattern contributes two additional nodes to the node count. If we dif-
ferentiate (1) with respect to y and set y equal to 1, the resulting coefficient of xn is the total 
number of nodes in all BDD's of Fibonacci functions on n variables. Dividing by the number of 
BDD's of such functions yields the average number, of nodes. 

To derive T(x, y), we use the classification given in Figure 3. That is, 

T(x, y) = Ta{x, y) + Tb(x, y) + Tc(x, y) + xy\ (2) 

where Ta(x, y\ Tb{x, y), and Tc(x, y) are the generating functions for Type a, b, and c structures, 
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respectively, and xy3 is the generating function for the Type d structure. By symmetry, 

Tc(x,y) = Ta(x,y). (3) 

We can derive Ta(x,y) by observing that there are two types of BDD's counted in Ta(x,y)— 
those that contain at least one crest pattern (but not at the very top, which are Type b structures) 
and those that do not. BDD's of the first type are enumerated by x'y1Tb(x,y) for i > 1. Recall 
that the top crest pattern is preceded by a sequence of Type a structures. BDD's of the second 
type are enumerated by ix1+ly1+3 for i > 1. That is, this type of structure consists of a sequence of 
/ Type a structures ending with a Type d structure or followed by Type c structures alternating 
with Type a structures ending with a Type d structure. The string representation for this is 
al(ca)*(A + c)d. The factor x1+1 counts the variables involved, and the factor y1+3 counts the 
nodes involved, including the two sink nodes 0 and 1. Therefore, 

Ta(x, y) = xyTb(x, y) + x2y2Tb(x, y) + • • • + j/j/Tb(x, y) 
+ ... +x2y4 +2x3y5 + ••• +/x/+1y+3 + •••, 

which can be written as 

Ta(x9y) = ^Tb(x,y) + - ^ ^ : (4) 
l-xy (l-xy)1 

We can calculate Th(x,y) by observing that BDD's of Fibonacci functions containing a crest 
at the source node can be completed in three ways. Figure 4(c) shows that the bottom node of 
the crest is the top node of a Type b structure. The number of ways to choose a Type b structure 
is counted by the generating function Tb(x,y). The contribution of the crest itself to the variable 
and node count is expressed as x3y5. Thus, the total contribution to the variable and node count 
is expressed as x3y5Tb(x,y). Figures 4(b) and 4(d) show that the bottom node can also be the 
source node of a BDD with one node per variable expressed as (ac)*(a + X)d and (ca)*(A + c)d, 
respectively. The contribution of these nodes is expressed as 2x2y4 + 2x3y5 + 2x4y6 + • • •. The 
coefficient 2 occurs because of the two ways this part of the BDD can occur [Figures 4(b) and 
4(d)]. The superscript of x counts variables and the superscript ofy counts nodes, including the 
two sink nodes 0 and 1. The generating function for this power series is 2x2y4 / (1 - xy). A sub-
BDD consisting of just the lowest variable and the three nodes, including two sink nodes 0 and 1 
(i.e., a Type d structure) should also be included, and this is expressed as xy3. Figures 4(a) and 
4(e) show that more than one crest can also be cascaded so that each adjacent pair of crests share 
an arc and two nodes. In this case, the top BDD contributes two variables and four nodes. Since 
there are two ways for this to happen, the contribution is described by 2x2y4Tb(x, y). Considering 
all three ways to form a Type b BDD, we have 

Tb(x,y) = x3y5 

Solving for Tb(x, y) in (5) yields 

Tfayi + xy3*-"" 
l-xy 

,3 , 2xY + 2xYTb(x,y). (5) 

x4y*(l + xy) 
(l~xy)(l-xy-2xY) K*,y) = « ..:SKY?'2*- (6) 
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From (2), (3), (4), and (6), we can write 

T(x,y) = -
.3..7 x y -2x y +xy (7) 

( l - x y ) 2 ( l - x y - 2 x V ) ' 

Recall that a typical term in (7) is given in (1). We can find the total number of nodes by 
differentiating (7) with respect to y and setting y to 1. Doing this yields 

T(x) = - 3 + 2x 7 + 3x 
- + - 1 

(i-x-xy \-x-xl (i-xy i-x 
(8) 

The number of w-variable BDD's is calculated as follows. There are as many BDD's as there are 
integer threshold functions from 1 to the largest threshold. The largest threshold is the same as 
the largest weighted sum, 1 + 1 + 2 + 3 + ••• +Fn = Fn+2 - 1 . Note that we exclude BDD's corre-
sponding to T = 0 and Fn+2, which are trivial. Therefore, the average number of nodes is the 
coefficient t„ of the power series expansion of (8) divided by Fn+2 - 1 . Table 1 shows the average 
number of nodes as calculated in this way. 

TABLE 1. The Average Number of Nodes In BDDfs of 
Fibonacci Functions of n Variables 

1 Number of 
Variables 

1 n 1 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1 

12 
13 
14 
15 
oo 

Average 
Number 
of Nodes 

3.000 
4.000 
5.000 
6.286 
7.667 
9.200 

10.818 
12.519 
14.273 
16.070 
17.897 
19.745 
21.608 
23.481 
25.361 

1.8944n 

Standard Deviation 1 
on the Number 

of Nodes | 
0.000 
0.000 
0.000 
0.700 
0.943 
1.327 
1.585 
1.853 
2.049 
2.224 
2.354 
2.462 
2.543 
2.609 
2.659 | 

0.2540 <n 1 

Asymptotic Approximation 

Consider now the average number of nodes in BDD's of Fibonacci functions when the 
number of variables is large. We can factor the quadratic denominators in the partial fraction 
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expansion (8), forming a partial fraction expansion in which denominators involve linear factors 
only. That is, we can rewrite (8) as 

11 + SVS 61 + 3K/5 

m = ~ 1 ^ - T ~ , l°{5 ^ - , (9) 
1 - ^ - r X 1-

where •••represents terms whose contributions to tn, the coefficient of xn in the power series 
expansion of T(x), are negligible for large n compared to the contributions from the terms shown. 
Specifically, missing terms have denominators that are powers of (l + (2 / V5 + l)s) and (1 + s). 
Indeed, the second term in (9) is negligible for large n compared to the first term; we include it for 
a reason that will become clear in the next section. The contribution to t„ from these terms is 

11 + 5^5, 1X 61 + 31V5 
-(TI + 1 ) -

10 V ; 10VS J U / 5 - 1 , 

The number of BDD's of n-variable Fibonacci functions, Fn+2 - 1 , is approximated by 

V5 

(10) 

(11) 

when n is large. Dividing (10) by (11) yields the following asymptotic approximation to the 
average number of nodes in BDD's of Fibonacci functions on n variables, 

l ± 2 ^ I J - 2 + 6 ^ w l 8 9 4 ^ _ 3 0 8 3 2 ( 1 2 ) 
5 5 ' v } 

which is asymptotic to 1.8944w, for large n. As can be seen from Table 1, 3.0832 is significant 
for the values of n shown here. 

4. THE VARIANCE OF THE NUMBER OF NODES IN BDD'S 
OF FIBONACCI FUNCTIONS 

We can calculate the variance on the number of nodes in BDD's of Fibonacci functions using 
the generating function for the distribution of nodes given in (7). That is, if X is a random vari-
able, then the variance <J2{X) of Xis given as 

a\X) = E(X2)-E\X), 
where E{X2) is the expected value of X2 and E(X) is the expected value of X. E(X) was cal-
culated in the previous section. E(X2) can be calculated by differentiating (7) with respect to y, 
multiplying byy, differentiating with respect toy again, and settingy to 1. In the resulting expres-
sion, the coefficient of xn is EX2. Dividing this by the number of BDD's of Fibonacci functions 
yields E(X2). Differentiating (7) with respect to y, multiplying by y, differentiating with respect 
toy again, and settingy to 1 yields 

16 +10s 49 + 16x 49 +25s 6 L _ _ J ^ _ 2 
(1 -s -s 2 ) ' (1-s-s2)2 1-s-s2 (1-s)3 (1-s)2 1-s 1 + s 
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The coefficient of x" in the power series expansion of (13) is decreased by E2(X) and the result 
divided by the number of BDD's of Fibonacci functions on n variables, Fn+2 -1, to get the vari-
ance on the number of nodes for ^-variable BDD's of Fibonacci functions. This yields <J2{X). 
Table 1 shows the standard deviation, <J(X), of the number of nodes, as calculated in this way. 

Asymptotic Approximation 

Consider the standard deviation on the number of nodes in BDD's of Fibonacci functions 
when the number of variables is large. We can rewrite (13) as 

47 + 21V5 691 + 277V5 2131 + 881V5 

^ — 3 - SQ T+, 5 ° f , + - , (14) 
l - ^ x \ l - * x \ 1-

where the contribution to EX2 for large n from other terms is negligible compared to the contri-
bution from the terms shown. The contribution of these three terms is indeed 

47 + 21V5, 2 . . . 691 + 277V5 , 1X 2131 + 881V5 
r^—in +3/2 + 2) — ( « + l) + 7 = - ^ 

10V5 v ' 50 v ' 50V5 
V5-1 

(15) 

Dividing this result by (11), an approximation to the number of BDD's of Fibonacci functions, 
yields E{X2). Subtracting from this the square of the average number of BDD's of Fibonacci 
functions, as given in (12), yields the following asymptotic approximation to the variance on the 
number of nodes in BDD's of Fibonacci functions 

100-44V5 228-28V5 nngZAC , , 1 C , /1/C. 
— n + - — « 0.0645/2 + 6.6156. (16) 

25 25 v ' 
Note that there is no n2 term in (16); the n2 term in E{X2) has been canceled by an identical term 
in E2{X). Therefore, terms of order n are needed in the asymptotic expressions for E(X2) and 
E2(X). This is why we included in (10) and (12) an asymptotically insignificant term. 

Equation (16) is an expression for a2(X). The standard deviation <J(X) is then 
100-44V5 228-28^5 in^Ac ^ 1 ^ /i-rx 

—n + «v0.0645/i +6.6156, (17) 
25 25 ' v ' 

which is asymptotic to 0.2540V«, for large n. As can be seen from Table 1, 6.6156 is significant 
for the values of n shown. 

5, DISTRIBUTION OF THE NUMBER OF NODES IN BDDfS OF 
FIBONACCI FUNCTIONS 

Figure 5 shows the distribution of nodes in the BDD's of Fibonacci functions, as computed 
from (7). Here, the number of variables and the number of nodes in BDD's are plotted horizon-
tally, while the number of Fibonacci functions is plotted vertically. A vertical line represents the 
number of Fibonacci functions whose BDD's have the number of variables and the number of 
nodes as specified by the coordinates in the horizontal plane. The vertical axis shows the log of 
the number of functions. Note the linear increase in the log of number of functions with the 
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number of nodes in BDD's for a fixed number of variables, which corresponds to an exponential 
increase in the number of functions. 

FIGURE 5. Distribution of Fibonacci Functions by Nodes and Variables 
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