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1. INTRODUCTION 

We discuss the triangular map and also Baker's map [2], [4] with the parameter ju chosen 
with the value of the golden mean: (1 + V5)/2 « 1.618. For an arbitrary parameter value in the 
range 0 < ju < 2, the starting graph (x, /(*)) in the range 0 < x < 1 is a line segment for a triangu-
lar map, and two line segments for Baker's map (see Fig. 1 and Fig. 4). We are interested in the 
graph of / M , where n>\. Since the starting graph contains a set of line segments, the proceed-
ing graphs (x , /M(x)) are then obtained from iterates of the beginning line segments in the 
starting graph. It is therefore important to discuss iterating these two maps on line segments. 
Since these two maps are piecewise linear maps, it can then be shown that the graph of / w is a 
composition of line segments (see Fig. 3 and Fig. 6). These two maps are simple for p in the 
range 0 < ju < 1 because the number of line segments does not increase under the action of map-
ping; the graph of / w is therefore simple. Yet, they are often complicated in the range ju>l, as 
the action of mapping on starting line segments will generate more line segments of which the 
lengths In general are different. The graph of / w Is then a set of line segments with Irregular 
shape which becomes very complicated when n is large. It is then difficult to determine the graph 
of / M . However, we can show that when // is chosen with specific values, for instance, the 
golden mean, the graphs (x, f^n\x)) are again simple. There are only a few types of line seg-
ments in each graph and, Interestingly, the numbers of line segments of the graphs are those of the 
Fibonacci numbers. Nature shows that Fibonacci numbers occur quite frequently In various areas; 
therefore, it is interesting to know that Fibonacci numbers and, In fact, Fibonacci numbers of 
degree m, can be generated from a simple dynamical system [3]. In this work, we contain some 
reviews of [3], show the similarity of these two maps when a specific parameter value Is chosen, 
derive geometrically a well-known identity In Fibonacci numbers, and show that some invariant 
sequences can be obtained. 

2. THE TRIANGULAR MAP WITH /i = (1 + S) / 2 

First, we discuss the general triangular T̂  map, which is defined by 

TM(x) = l-ju\xl (1) 
or 

xn+l = l-M\xnl (2) 

where ju Is the parameter. We restrict the ranges to: -1 < x < 1 and 0 < // < 2, so that T^ maps 
from the interval [-1,1] to [-1,1]. Figure 1 shows three graphs of T̂  for, respectively, // = 0.6,1, 
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and (1 + V5)/2. We define xx = TM(x) as the first iterate of x for TM, and xn = T^x^) = TW(x) 
as the /2th iterate of x for T .̂ Since all the graphs (x, Tjf](x)) are symmetrical for x>0 and 
x < 0 , we henceforth consider these graphs in only the region of x>0 . The starting graph, 
^(x) = 1 - / # , in the range x > 0 is then a line segment from point (0,1) to point (1,1 - ju) with 
slope -ju . We call this the starting line segment. Iterating this map on this starting line segment 
then generates all the proceeding Tj^ graphs. 
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For a general discussion on an iterate of a line segment, we consider an arbitrary line segment 
described by y = g{x) = a + bx, where 0 < x < 1 and -1 < g(x) < 1. The upper piece of this line 
segment, for which g(x) > 0, after one iteration, goes to a line segment described by y=TM(g(x)) 
= l~aju~ bjux. Hence, the slope and the length of the upper piece have been rescaled, the sign of 
the slope alters as well; the slope rescaling factor is seen to be -ju. The lower piece, for which 
g(x)<0, goes to another line segment described by .y=T (g(x)) = l + a/u + bjux. Hence, the 
slope and the length of the lower piece have been rescaled, the sign of the slope is not altered; the 
slope rescaling factor is ju. Since the slope rescaling factors are different for these two pieces, a 
line segment after one iteration will be folded into two connected line segments if this line 
segment intersects the x-axis. A line segment that does not intersect the x-axis will only change 
its slope and length but not be folded. These are useful in graphical analysis of iterates. 

For ju in the range 0< // < 1, the T̂  map is simple, as there is one stable fixed point x* = 
1/(1 + //), and the basin of attraction of x* consists of all x G [ - 1 , 1], hence the graph of T[f], as 
w -» oo, will finally approach a flat line segment with height x*. Or, we may see this from iterates 
of the starting line segment. Since the starting line segment does not intersect the x-axis and the 
slope rescaling factor is -// for which | / / |<1, the starting line segment under iterations then 
remains a line segment and getting flatter but with one point fixed. The graph of T^, as n —> oo? 

then approaches a flat line segment with a height which can only be of the value of the fixed point, 
that is, x*. This map with // < 1 is therefore simple. 

For ju = 1, we have T^(x) = 1- x and T^\x) = x, hence {x, 1- x} is a 2-cycle for each x, and 
we have, therefore, only two shapes which are the graphs (x, TM(x)) and (x, T^2](x)). Or, since 
the starting line segment, with slope - 1 , does not pass through the x-axis and the slope rescaling 
factor is - 1 ; therefore, the starting line segment under iterations remains a line segment but with 
slope 1 and - 1 , alternatively. This map with // = 1 is also a simple map. 

For 1 < ju < 2, there exist no stable fixed points for TM, Tp], and in fact for T[f] with n any 
positive integer. This is because the |slope| at each fixed point of T[f] equals //" which is greater 
than one; hence, there are no stable fixed points for T[f]. In such a region without any stable 
cycles, the iterative behaviors in general are complicated. Indeed, as the starting line segment 
now intersects the x-axis, the action of mapping will keep on folding line segments and, therefore, 
producing more and more line segments of which the lengths in general are different; thus, the line 
segments in each graph are of many types. Each graph is then the connection of line segments of 
many types and, therefore, has an irregular zigzag shape. The complication of the graph T[f] 

increases with n, and it is hard to predict what the final result will be. Interestingly, there are 
cases that are easier to analyze. We may consider focusing on some particular values of ju such 
that the iterative behaviors are simple. 

To choose the proper values of ju in the range 1 < ju < 2, the consideration is upon the parti-
cular point of x = 0 at which the function T^(x) has a maximum height of 1. We require that this 
point be a periodic point of the map. The orbit of x = 0 is 0, T^O), T^2](0), T^(0), ... etc. We can 
easily see that TL2](0) = 1 - // and Tj^(0) = 1 - //(// -1) = 1 + ju - //2. The required parameter value 
for x = 0 becoming a period-2 point is determined from the equation TĴ (O) = 0. The solution is 
ju = 1. As discussed above, it is a simple map in this case. Requiring x = 0 to be a period-3 point, 
we should have T*3](0) = 0; that is, / / 2 - / / - l = 0. For / / > 1 , the solution is // = (l + V5)/2, 
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which is the well-known golden mean. With these basic arguments, we then have the following 
results when // = (! + V5) / 2. 

Proposition 2.1: The point x - 0 is a period-3 point of the triangular T̂  map. 

Proof: This is obvious, as we see that the 3-cycle is {0,1,1 - ju}; l-ju = -l/ ju. 

In what follows, we will discuss the graph y = Tjf](x) in the range 0 < x < 1. It is important 
to discuss an iterate of a line segment. We first define two types of line segments. We denote by 
L a long line segment connecting points (xh l-ju) and (x2,1), where 0< x1? x2 < 1 and by S a 
short line segment connecting points (x3,0) and (x4,1), where 0 < x3, x4 < 1. The four graphs of 
Figure 2 show some examples of line segments of these two types, where the subscripts + and -
label line segments with positive and negative slope, respectively. 
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In fact, as will be shown, we need only consider an Iterate of line segments of type L and type 
S; hence, we now discuss 7M(h(x)) and Tw(S(x)), where L(x) and S(x) are linear functions 
whose graphs are long and short segments. Using 1^(0) = 1, TM(l) = l-ju, and T / / ( l - / / ) = 0, 
Figure 2(a) then shows that a line segment L+ connecting points (x1? 1-//)- and (x2,1), after one 
Iteration, is folded into two line segments, of which one connects points (x1? 0) and (x0,1), i.e., an 
S+, and the other connects points (x0,1) and (x 2 ,1 - / / ) , i.e., an L_, where (x0,0) is the 
intersection point of the line segment L+ with the x-axis. Therefore, an L+ after one iteration 
goes to an S+ and an L_, we denote this by TM:L+ -> S+L_. The graphs of Figure 2(b), 2(c), and 
2(d) show an Iterate of a line segment of type L_, S+, and S_, respectively. From these, we 
conclude that the action of this map on line segments of these four types Is described as: 

T ^ L + ^ S + L -

S+->L_ 
S _ ^ L + 

TM then acts as a discrete map for L and S. If we are only to count the number of line segments in 
a graph—we need not distinguish L+ from L_, S+ from S_, and LS from SL—then (3) can be 
expressed more simply as: 

T , : L - ^ L S 

S - > L 

From (4), we have the following results. 

Proposition 2.2: The graph of y - T^\x) in the range 0 < x < 1 contains line segments of only 
two types, type L and type S, and the total number of these line segments is Fn+V 

Proof: Since the starting graph is a line segment connecting points (0,1) and (1,1 - ju) [see 
Fig. 1(c)], it is thus a line segment of type L. From (4), we see that, starting from an L, line 
segments generated from iterates of that are, therefore, only of two types: type L and type S. 
From (4), we also see that line segments of type L and S, respectively, are similar to those rabbits 
of type large and small in the original Fibonacci problem; hence, the numbers of line segments of 
all the graphs Tjf] would be those of the Fibonacci numbers. Therefore, we have shown an inter-
pretation of the Fibonacci sequence from the point of view of a simple iterated map. Although we 
start from a functional map T^ on a finite interval of x, however, if we take line segments as the 
entities, then TM acts as a discrete map for these entities, and the mechanism of generating line 
segments from the action of this discrete map is now the same as the breeding of the Fibonacci 
rabbits. We now let L(n) and S(«) represent, respectively, the numbers of L's and S's in the 
graph of T[f]. Then, from (4), we have 

h(n) = L(n-l) + S(n-ll 

S(w) = L( / i - l ) . U 

Equation (5) shows that L(w) = L(n -1) + L(w - 2) and S(w) = S(n -1 ) + S(/i - 2). Thus, both 
sequences {L(^)} and {$(n)} are the Fibonacci-type sequences. Since we start from an L with 

1996] 427 



ON TRIANGULAR AND BAKER'S MAPS WITH GOLDEN MEAN AS THE PARAMETER VALUE 

slope - / / , we have L(l) = 1 and S(l) = 0. According to (5), we then have L(n) = Fn and $(ri) -
Fn_x, where Fn is the 72th Fibonacci number, and the |slope| of each line segment in the graph 
of T[f] is jun. Therefore, the total number of line segments in the graph of Tjf] is L(n) + S(n) = 
Fn +Fn__x - Fn+l. Figure 3 shows the graph of T*5], from which we can count the number of line 
segments as being F6 = 8. 

FIGURE 3 

In [1] there is an interesting theorem stating that limw_»oologC(>f, ju)/n = log ju, where 
C(n, ju) is the number of line segments of the graph y - f[n](x, ju) and ju is an arbitrary parameter 
value. In our case, C(n,ju) = Fn+l and // = (l + V5)/2, so using the well-known formula 
Fn = (//"-(1 -//)")/V5 we can easily calculate that X\mn^\ogC{n,ju)In is indeed the value 
log//. 

Proposition 2.3: A simple identity, juFn + Fn_x = jun. 

Proof: In the graph of T*?\ we have F„ long line segments and Fn_l short line segments, and 
the |slope| of each line segment is ff. We denote by d(L,n) andrf(S, n), respectively, the pro-
jection length of a line segment of type L and type S on the x-axis in the graph of T "̂]. We then 
have d(L, ri) = (ju)l~n and d(S, n) = (//)"". Since the total projection length of these Fn+l line seg-
ments in the x-axis should be 1, we have 

Frid(L,n) + Fn_1d(S,n) = l (6) 
or 

ftF„ + Fn_1 = ff. (7) 

This is a well-known identity in Fibonacci numbers; here we have derived it geometrically. 

Proposition 2.4: There are three infinite LS sequences that are invariant under three iterations of 
the map (3). 

Proof: We consider the shape of the graph of y = Tjf](x) in the range 0 < x < 1. Since all the 
shapes are from the connection of line segments of type L+, L_, S+, and S_; therefore, we can 
describe each shape in terms of an LS sequence. We let LS[T"] represent the LS sequence 
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describing the shape of the graph of y = Tjj"](x) in the range 0 < x < 1. The starting graph is 
simply L_. From (3), we have: 

LS[T!] = L_ 
LS[T2] = L+S_ 
LS[T3] = S+L_L+ 

LS[T4] = L_L+S_S+L_ , g ) 

LS[T5] = L+S_S+L_L+L_L+S_ 
LS[T6] = S+L_L+L_L+S_S+L_L+S_S+L_L+ 

LS[T"] = LS[r-3]LS[r-2]LS[T"-4]LS[T"-3] 

The last formula in (8) is for general n and can be proved easily by induction: starting from 
« = 5, we have LS[T5] = LS[T2]LS[T3]LS[T1]LS[T2], and then, after one iteration, we have 
LS[T6] = LS[T3]LS[T4]LS[T2]LS[T3], ... etc. The length of the LS[T"] sequence is Fn+l. Equa-
tion (8) shows that, after three iterations, an LS sequence will get longer but the original LS 
sequence remains. By taking n -> oo, we then have an infinite LS sequence which is invariant 
after three iterations of the map (3), since from (8) we have 

limLS[r]=limLS[T"-3]. 
»-»oo »->oo 

We denote by {T*} the first Invariant Infinite LS sequence obtained from iterates of an L_, that is, 

{T7°}=limT*3w](L_). 

We see that (I™} is invariant after three iterations of the map (S)rThere are two other invariant 
infinite sequences which we denote by {T£°} and {TJ0}, where {TJ0} is obtained from an iterate of 
{IT}, i-e., {T2

W} = T^Tr), and {%"} is from an iterate of {T~}, i.e., {%>} = T ^ } = T ^ T f } . 
Therefore, there are at least three infinite LS sequences that are invariant after three iterations of 
the map (3). Since 

{TH = T {TH = lim T^+l\h.) = lim T^(L+S_) = lim Xf^(L+), 

this means that {T2°°} can be obtained from iterates of an L+. Finally, since 

{T3-} = T {T2°°} = lim Tf+1^(L+) = lim Tf^(S+L_) = lim TJ^(S+), 

this means that {T3°°} can be obtained from iterates of an S+. Therefore, from the first few iterates 
of L+, L_, and S+, we have the following first few elements of these three infinite sequences: 

\\-\ j — 1^_ JL+o_ 0+L—JL+o—o+JL—JL+JL—JL+O_o-j-L'—l_y+JL—JU+O—o+JL'— . . . 

{T"} = L+S_S+L_L+L_L+S_S+L_L+L_L+S_S+L_L+S_S+L_L+ ... (9) 

{T3"} = S+L_L+L_L+S_S+L_L+S_S+L_L+L_L+S_S+L_L+S_S+ ... 

There is no invariant sequence with S_ as the first element since, after three iterations, S_ goes to 
L_LH.S_, the first element is now L_ instead of S_. If a sequence were an Invariant sequence, its 
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length must be infinite and its first element can only be an L+ or an L_ or an S+, and that would 
just correspond to the infinite sequences 07°}, {T2°°}, and {T3°°}; hence, there are only three infi-
nite LS sequences that are invariant after three iterations of the map (3). As a result, to arrange 
LS sequences that are invariant after three iterations of the map (3), the L+'s, L_'s, S+'s, and S_!s 
should be arranged according to the orders described in (9). This interesting phenomenon may 
have applications in genetics. The general rule for deciding the /1th entry in each of these three 
sequences is complicated; we will discuss this in the next section, where we treat a similar but 
simpler case. 

3. BAKER1 S MAP WITH /i = (1 + V5) / 2 

We now consider the easier Baker B map, which is defined by 

B„(*) = 
fJX fo r0<x< l /2 , 
/ / ( J C - 1 / 2 ) f o r l / 2 < x < l , 

(10) 

where pi is the parameter. We restrict the ranges to 0 < pi < 2 and 0 < x < 1, so that B^ maps 
from the interval [0,1] to [0,1]. Figure 4 shows the graph of B^ for // = (! + <J5) 12. 

FIGURE 4 

The interesting point of x now is x = 1/2. We require that x - 1/2 be a period-2 point of the 
map. The parameter value in this condition is easily determined to be pi - (1 + <JE) 12. Hence, pi 
is again the value of the golden mean. Using this parameter value, we have the following results. 

Proposition 3.1: The point x = 1/2 is a period-2 point of the B^ map. 

Proof: We easily see that the 2-cycle is {1 / 2, pi 12} when pi = (1 + V5) / 2. 

The starting graph in the range 0 < x < l is y = B//(x) (see Fig. 4). It consists of two parallel 
line segments: one connecting points (0,0) and (1/2, pi 12); the other connecting points (1/2,0) 
and (1,pi/2). We denote by L a long line segment connecting points (xx,0) and (x2,pi/2), 
where x2>xv and by S a short line segment connecting points (x3,0) and (x4,1/2), where 
x4 > x3. Figure 5 shows some examples of line segments of these two types. 
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3̂ *4 (b) 

FIGURE 5 

The graph of y - B^(x) then contains two parallel line segments of type L with slope ju. 
Using B^(0) = 0, BA(1 / 2) = ju 12, and B(> / 2) = 1 / 2, Figure 5(a) shows that a long line segment 
connecting points (x1? 0) and (x2,ju/2), after one iteration, splits into two line segments, of which 
one is a long segment connecting points (xl30) and (x2,ju/2) and the other is a short segment 
connecting points (x0, 0) and (x2,1/2), where x1<x0<x2 and B//(x0) = 1/2. Figure 5(b) shows 
that a short line segment connecting points (x3,0) and (x4,1/2), after one iteration, goes to a 
long segment connecting points (x3,0) and (x4,ju/2). From these, we conclude that the action of 
this map on line segments of these two types is described as: 

B ^ L - ^ L S 

B^ is then also a discrete map for L and S. From (11), Proposition 3.2 follows immediately. 

( i i ) 

Proposition 3.2: The graph of y = B^](x) in the range 0 < x < 1 contains line segments of only 
two types, type L and type S, and the number of these line segments is2i^+1. 

Figure 6 shows the graph of BĴ ]. We can count the number of line segments in this graph to 
be 2F5 = 10. 

Proposition 3.3: A simple identity, juFn + Fr!_l = jun. 

Proof: The proof is similar to the triangular T̂  map with // = (! + V5) / 2 in Proposition 2.3. 
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Mr Bl4J(!) /. = (HVTl/2 

FIGURE 6 

Proposition 3.4: There is an infinite LS sequence which is invariant under the action of map (11). 

Proof: We denote by LS[B"] the LS sequence describing the shape of the graph y =B^](x) 
in the range 0 < x < 1 / 2. From (11), we have the following results: 

L S P ^ L 
LS[B2] = LS 
LS[B3] = LSL =LS[B2]LS[B1] 
LS[B4] = LSLLS 
LS[B5] = LSLLSLSL 

= LS[B3]LS[B2] 
= LS[B4]LS[B3] 

(12) 

LS[B"] = LSp^lLStB"- 2] 

The length of the LS[B"] sequence is Fn+l. Equation (12) shows that, after one iteration, an LS 
sequence gets longer, but the original LS sequence remains. By taking n-> oo, we then have an 
infinite LS sequence which is invariant under the action of map (11) since, from (12), we have 

limLS[B"]=limLS[B"-1]. 
W-»00 W-»00 

We denote by {B°°} the infinite LS sequence obtained from iterates of an L, that is, 

{B°°}=limB[;](L). 

We see that {B00} is invariant under the action of map (11). It is impossible to have an invariant 
sequence with S as the first element. Therefore, we have only one infinite LS sequence that is 
invariant under the action of map (11). Therefore, from the first few iterates of L, we have the 
following first few elements of this infinite sequence: 

{B00} = LSLLSLSLLSLLSLSLLSLSL ... (13) 

Thus, to have an invariant LS sequence, the L's and S's should be arranged according to the order 
described in (13). We shall discuss this special symbol sequence in more detail. Denoting by 
B(k) the k^ element of this sequence, then, from (13), we have B(k) = L for k = 1, 3, 4, 6, 8, 9, 
11, 12, 14, ..., and B(k)= S for k = 2, 5, 7, 10, 13, 15, ... . It would be interesting to find a way 
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of determining that B(k) is an L or an S for a given k. So far, we have not obtained a simple 
formula for this, except for the following descriptions that are based on the following theorem. 

Theorem: For k >3, B(k) = B(d), where k = d + Fn(k) mdFn(k) is the largest Fibonacci number 
that is less than k. 

Proof: Suppose Fn^ is the largest Fibonacci number that is less than k, and let d - k - Fn^. 
Then Fn^ <k<Fn^k)+l. Using the property that the length of the LS[B"] sequence is Fn+l, this 
k^ element is then in the LS[B"(A::)] sequence. Since Fn^ < k, and using also the property that 

LS[B"] = LStB^JLSITB"-2] = (LS[BW-2]LS[B"-3])LS[B"-2], 

we find that the k^ element in the LS[Bw(^] sequence is equivalent to the (k-F^^f1 element in 
the LS[B"W-2] sequence. We then have the result that B(k) = B(k - Fn{k)) = B(d). 

The determination of B(k) is then reduced to the determination of B(d); we call this the 
reduction rule. According to this reduction rule, we may reduce* the original number k down to a 
final number dk with dk = 1 or 2, that is, 

n{k) 
k - ^cnFn = dk, where cn - 0 or 1, and dk - 1 or 2. (14) 

Equation (14) means that, for a given number k > 3, we subtract successively appropriate differ-
ent Fibonacci numbers from k, until the final reduced number, dk, is one of the two values {1,2}. 
B(k) is then the same as B(dk). We call dk the residue of the number k. We conclude that 

B(k) = B(dk). (15) 

Since B(l) = L and B(2) = S, we have 

fB(*) = L, ifdk = l, 
[B(k) = S, ifdk=2. K } 

For example, if we are to determine B(27), then as 27 = Fs + 6 and 6 = F5 +1, we have B(27) = 
B(6) = B(l) = L. The method of reducing a number k down to dk mentioned above is unique. 
We note that if B(k) = S, then B(*-1) = B(k +1) = L, since if dk=2, then the coefficient % in 
(14) must be zero; otherwise, we would have d = 4, and then dk = l from the reduction rule. 
This contradicts dk=2; hence, k = Z^c n F n + 2. Therefore, 

n(k) n{k) n(k) 
k-\=^cnFn + \ and * + l = Xc„F„+3= Y,c„Fn + \; 

n=4 «=4 n=3 

hence, B(k -1) = B(l) = L and B(k +1) = B(l) = L. As a result, the two neighbors of an S in the 
sequence must be L's, or there are no two successive elements that are both S's. On the other 
hand, if B(Ar) = L, it is possible that B(k +1) = L. This occurs when k can be reduced to 3, that is 
k = Tn

rj
(*5

)cnFn+3, we see that B(Jfc) = B(3) = L and B(* + 1) = B(4) = L. Now, since 
k + 2 = J$QcnFn+2, we have B(A + 2) = B(2) = S; therefore, it is impossible to have three 
successive elements that are all L's. We present the following table: 
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dk B(k) k 
(dk = \) L| 1 3 4 6 8 9 11 12 14 16 17 19 21 22 ... 
(dk = 2) Sj 2 5 7 10 13 15 18 20 23 ... 

Since the two neighbors of an S are L's, it is better that we use the first three elements as the 
set of residues. That is, we start from B(l) = L, B(2) = S, B(3) = L, and then we have 

fB(*) = L, if^ = lor3 , 
\B(*) = S, if<4=2. *• ; 

For the case B(&) = S, we would expect that B(k -1) = L, with dk_l = 1, and B(k +1) = L, with 
dk+l = 3; however, this is not so. For example, when k = 5, B(5) = S, and according to the 
reduction rule, we have 4 = F4 + 1, so B(4) = L and d4 = 1; but 6 = F5 +1, so B(6) = L and d6 = 1 
not 3. Instead, if we now write 6 = F4 + 3 and assign d6 = 3, then we would obtain the same 
result: B(6) = B(3) = L. This shows that we may assign d6 as either 1 or 3. Numbers whose 
residue can be assigned as either 1 or 3 are 

k = YJc„Fn + 6, c„ = 0orl . (18) 
n=6 

This enables us to present the following table: 
dk B(k) k 

(dk = l) L| 1 4 6 9 12 14 17 19 22 25 27 30 ... 
(dk = 2) S| 2 5 7 10 13 15 18 20 23 26 28 31 ... 
(dk=3) L| 3 6 8 11 14 16 19 21 24 27 29 32 ... 

The first, second, and third lines are, respectively, for those k with dk = 1,2, and 3. We note that 
numbers, such as 6, 14, 19, 27, ... etc., appear both in the first and third lines. From (17), we see 
that there are two cases, dk = 1 ordk -3, for B(k) being an L, and only one case, dk=2, for 
B(k) being an S. Therefore, naively, we would think that the ratio of the total number of k with 
B(k) = L to that with B(k) = S is 2; however, this is due to the fact that we have made the double 
counting on those numbers of the form (18). Without the double counting, the ratio should be 
less than 2; indeed, the actual ratio is the golden mean «1.618 < 2. It can be seen from (12) that 
the length of the LS[n] sequence is Fn+l, and that among the elements in this sequence there are 
Fn L's and Fn_x S's. Therefore, the asymptotic ratio is 

lim(F„//v1) = (l + V5)/2. 
n-><x> 

We also have the following results: 
(1) If B(k) = S, then B(k -1) - B(yfc +1) = L. 

(2) If B(/t) = L and k is of the form (18), then B(/t +1) = B(yfc -1) = S. 

(3) IfB(k) = Landk is not of the form (18), then<̂  k v ' v ' ' 
v ' |for<4 = 3, B(/t + l) = LandB(jfc-l) = S. 

434 [NOV. 



ON TRIANGULAR AND BAKER'S MAPS WITH GOLDEN MEAN AS THE PARAMETER VALUE 

4. A FINAL REMARK 

In a triangular map, requiring that x = 0 be a period-3 point determines ju = (14- V5) / 2 = E3, 
and we find the Fibonacci numbers in this map. This is not an accident, since E3 is not an 
arbitrary number but, in fact, equals hmn^ao(Fn/Fn_l)9 the limit ratio of the Fibonacci sequence. 
We can generalize the above results by requiring that x = 0 be a period-m point [3]. This then 
determines a unique parameter value ju = I,m in the range Zm_l <ju<2. Correspondingly, the 
numbers of line segments in a triangular map with ju = I,m are those of the Fibonacci numbers of 
degree m. These are not accidents either, since Sw in fact equals X\mn_^wF^m') IF^, the limit 
ratio of the corresponding generalized Fibonacci sequence, where F^ is the w* Fibonacci 
number of degree m. The same applies also to Baker's map with ju = Ew. Therefore, following 
the same methods used in this paper, one would also obtain a simple identity and some invariant 
sequences from these two maps with ju = I,m. 

ACKNOWLEDGMENT 

The author would like to thank the anonymous referee for a very thorough reading and 
critique of this paper. The criticisms and suggestions of the referee have greatly improved the 
clarity of presentation of this paper. I also thank Professor Leroy Jean-Pierre for helpful discus-
sions, and the National Science Council of the Republic of China for financial support through 
NSC Grant No. 82-0208-m-031-014. 

REFERENCES 

1. L. Alseda, J. Llibre, & M. Misiurewicz. Combinatorial Dynamics and Entropy in Dimension 
One, Theorem 4.2.4 and Corollary 4.3.13. Singapore: World Scientific Publishing Co. Pte. 
Ltd., 1993. 

2. D. Gulick. Encounters with Chaos, pp. 33-37, 95. Singapore: McGraw-Hill, Inc., 1992. 
3. C. L. Lin. "Generalized Fibonacci Numbers and the Triangular Map." Chinese Journal of 

Physics 32 (1994):467-77. 
4. H. G. Schuster. Deterministic Chaos, pp. 20-22. Weinheim: Physik-Verlag, 1984. 
AMS Classification Numbers: 11B83, 58F03, 58F35 

• > • > < • 

1996] 435 


