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1. INTRODUCTION 

K. T. Atanassov and others, in [3], [1], and [2], introduced (2, F) and (3, F) sequences which 
were pairs and triples of sequences defined by two or three simultaneous Fibonacci-like recur-
rences, respectively, for which the exact definition will be given at the end of this section. 

There are four (2, F) sequences, among which one is a pair of (1, F) sequences defined by the 
original Fibonacci recurrence and the other three are essential. As we are interested in the solu-
tions of the systems of recurrence equations with the general initial conditions rather than the 
resulting sequences for some particular initial conditions, we call such a system a "(2, F) system." 
The (2, F) system consisting of two (1, F) recurrences is called a "separable (2, F) system," and 
the other three are called "inseparable (2, F) systems." 

In the case of three sequences, some of the thirty-six (3, F) systems of simultaneous recur-
rence equations give the same triple of sequences apart from their order provided appropriate 
initial conditions. K. T. Atanassov [2] and W. R. Spickerman et al. [5] studied equivalence 
classes of (3, F) systems of recurrences which give essentially the same sequences and determined 
eleven classes. One of them consists of three (1, F) recurrence equations and three of them are 
separated into one (1, F) recurrence and an inseparable (2, F) system of recurrence equations. 
Therefore, we have seven classes of inseparable (3, F) systems of recurrence equations, for which 
the definition will be given in Section 4. 

The purposes of this paper are to establish the method of counting the number of equivalence 
classes of (m, F) systems consisting of m Fibonacci-like recurrences and the number of classes of 
inseparable (m, F) systems, and give their values for small m. Furthermore, we apply the same 
method to (m, F^) systems where the Fibonacci-like recurrences in (m, F) systems are replaced 
with /^-order recurrences of type (1). More precisely, an (m, F^) system is defined as follows. 

Definition 1: A set of m recurrence equations 

3ff(*)=#Vi(*»+#?(^(*))+• • •+#}+i(<v(*)) (forn* / )» (•!) 
where k = l,2,...,m and ah <72, ..., oy are permutations belonging to the symmetric group Sm of 
order m is called an (m, F^) system, and a set of m sequences {Fy\k)}, where k = 1,2,..., m 
and n = 1,2,..., oo3 or a sequence of w-dimensional vectors that can be determined as the solu-
tions of this system with given initial values {F^f\k)}, where k = 1,2,..., m and n = 1,2,...,/, is 
called an (m, F^f)) sequence. In particular, in the case / = 2, it is called an (m, F) sequence. 
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2. PREPARATION FROM GROUP THEORY 
First, we recall a counting theorem given by Burnside. 

Burnside's Theorem: Let G be a finite group of order \G\ operating on a finite set M. Then the 
number of distinct orbits associated with G is given by 

where Xx(g) is the number of fixed points inMby g. 
The proof can be found, for instance, in [4] and will be omitted here. 
Now, let pm denote the number of conjugate classes in Sm, and let bt =\Bt | be the number of 

elements of the conjugate class Bt for / = 1,2,..., pm. Each a eSm can be represented as the pro-
duct of disjoint cycles uniquely up to their order. If a is represented as the product of Xx cycles 
of length 1, X2 cycles of length 2, ..., Xm cycles of length m, we say that it has the cycle type 

l ^ 2 . . . m S (2) 

where Xx, X2, ..., Xm are nonnegative integers satisfying 

l'Xl+2'X2 + -~+m'Xm=m. (3) 

Two permutations in Sm are conjugate if and only if they have the same cycle type since an 
element // eSm satisfies r/arf1 = a if and only if it does not change each cycle of a or just make 
some permutations of the cycles of the same length. Since this gives also the condition that 
t] G Sm satisfies rja = err/, the centralizers of the elements of B. in Sm must have the same order, 
which will be denoted by q. Since all permutations in Bt have the same cycle type, we can repre-
sent it by (2). Then we have bt = m\l (Xx!X2!... Xm!\x'2Xl ...mXm) and 

ct =Al\A2\...Am\l**2X2 ...M1- (4) 

so that the relation 
bfi = \Sm\ = ml (fori = l,2,...,pm) (5) 

always holds. 
The conjugate classes of cycle types of Sm bijectively correspond to the integer partitions of 

m, and an algorithm for listing them can be found, for example, in D. Stanton and D. White [6]. 

3. THE EQUIVALENCE CLASSES OF (m, F^) SYSTEMS 

First, we consider (m, F^) systems. Following the manner that K. T. Atanassov did for 
m-2 and 3, for each m>0, an (m,F^) system is defined by m simultaneous recurrence 
equations Fn+l(k) = i^(cr1(A:))4-i^_1(cr2(A:)), for n>3, where k = 1,2,...,m and ax and a2 wee 
permutations in Sm. This is the special case of (m, F^) systems of recurrence equations defined 
by (1) for / = 2. If we give any initial values Fn(k), where k = 1,2,..., m and n = 1,2, then an 
(m,F) sequence {Fn(k)}, where k = l,2,...,m and w = l,2,...,oo, will be determined by these 
recurrences. Since this (m,F) system is determined depending only on ox and <J2, it will be 
denoted by Sicr^ a2). 
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Definition 2: Two (m, F) systems S(ah a2) and S(TX, T2) are said to be equivalent if there is an 
7] GSm such that rja^'1 = T{ and rja2Tfl = T2 are satisfied. 

It is shown in W. R. Spickerman et al. [5] that two (3, F) systems are equivalent if and only if 
they define the same triple of sequences up to their order by choosing appropriate initial values of 
one of them for the given initial values of the other. 

We define the operation of?]eSm on the system S(a{, <r2) by 

7](S(alv a2)) = SirjGtf-1, rja2ifl). (6) 

Assuming that the group acts on the set M = {S(crh (T2)\o'1, <J2 ^Sm} in this manner, we 
apply Burnside's theorem. 

Let 7] be an element of Sm. Then rj leaves S(ah <r2) fixed if and only if riaxrfl = ox and 
7]a2rfl = <J2, or rjal = atf and r/a2 = a2r/. If 7] GB{r, the number of such <JX and o2 are both 
c7, so that cf of S(al7 <r2) will be fixed by r\. Since we have bt permutations in Bu the number of 
systems fixed by permutations in a conjugate class Bt sums to tyc?. If we denote the number of 
distinct orbits in M associated with Sm, i.e., the number of equivalence classes inMby N(m,F), 
using Burnside's theorem and relation (5), we can represent it as 

N(m,F) = (Zbic?)/\SJ=i:ci, (7) 

where the summation is taken over all the conjugate classes of Sm, and we can evaluate this value 
by (4). 

We can easily generalize this result to the (m, F^) system S(ah cr2,..., ay) which is defined 
by the recurrences (1). 

Definition 3: Two (m, F^f)) systems S(ah a2,..., ay) and S(rh r2,..., ?y) are said to be equi-
valent if there is an r/ eSm such that r/a^'1 - ru r\a2rfl - r2,..., and rfofrj~l = rf are satisfied. 

Using the operation of rj eSm on (m, F^) systems defined by 

7j(S(ah o-2,..., oy)) = Sinew'1, tia2Tf\..., WfV~l) (8) 

instead of (6), we will have the formula for the number of equivalence classes of (m, F^f)) sys-
tems N(m, F^), in a manner similar to the case of (m, F) systems as 

N(m,F^) = (Uicf)/\Sm\=Zcf-\ 
Thus, we have the following theorem. 

Theorem 1: The number, N(m,F^), of equivalence classes of the set of (m,F^) sys-
tems S(<jh a2, ...?oy) defined by the recurrences (1) is given by N(myF^) = 1Lcf~l, where 
cz = X1\X2\ ...Xm\lXl2Xl ...mXm, and the summation is taken over pm congruent classes in Sm cor-
responding to the sets of nonnegative integers XhX2,...,Xm satisfying (3). In particular, for 
/ = 2, we have N(m, F) = Ec7. 

For / = 1, the value of N(m,Fil)) represents the number pm of congruent classes in Sm, 
which is also the number of integer partitions of m. This number can be calculated by any algo-
rithm for finding all the cycle types in Sm. 
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If pk(f) denotes the number of integer partitions of A: into exactly r parts, we can also calcu-
late the value of pm directly using the following properties: 

(i) For k > 0, pk(\) = pk(k) = 1, and pk(r) = 0 if r > k. 
(ii) Ifk>r>0,pk(r) = pk_r(l) + pk_r(2) + --+pk_r(r). 

(™) Pm = Pn,Q)+Pm(2) + ---+Pm(m)-
The values of N(m, F^) for small m and/are shown in Table 1. 

TABLE 1 

r>^z^w 
i 
2 

3 

1 4 

1 2 

1 2 

1 4 

1 8 

1 16 

3 

3 

11 

49 

251 

4 

5 

43 

681 

14491 

5 

7 

161 

14721 

1730861 

6 

11 

901 

524137 

373486525 

7 

15 

5579 

25471105 

128038522439 | 

4. THE NUMBER OF INSEPARABLE EQUIVALENCE CLASSES 

As we have stated for the case m = 2,3 and / = 2, some of the (m, F^) systems can be 
separated into smaller systems. 

Definition 4: An (m, F^) system S = S(ah <72,..., oy) ls separable if there exists a nonempty 
proper subset M' of M = {1,2,.., m) such that M' is stable (mapped into itself) by the permuta-
tions <jhcr2>->(Jf- Then the system (1) can be partitioned into an (m',F^) system and 
an (m",F^) system corresponding to M' and its relative complement M" = M-Mf, where 
\M'\ = m' and \Mn\-m'\ and Sis separated into an (mf,F^f)) system S'(a[, <J2, ...,cr'f) and an 
(mf\F^) system S"(a"9^29...9(T,f)9 where a's and o" are restrictions of <JS on M' and M", 
respectively, for s - 1,2,..., / . Otherwise, S is said to be inseparable. 

Definition 5: An (m,Fif)) system S is said to have type T- \x^2Xl ...mXm, if it can be divided 
into Xx(\, F{f)) systems, A2(2, F ( / ) ) systems, ..., and Am(m, F^n) systems that are inseparable, 
where Xl,A2,...,Zm are nonnegative integers satisfying (3). If / l r>0, S has a subsystem of 
type tx* consisting of Xt inseparable (t, F^) systems, which is referred to as the /-part of S. If 
Xt = 0, we say that the /-part of S is empty. 

Besides the symbol N(m, F^) defined above, we need the following notations. 

Notations 

S(m, F^)\ The number of equivalence classes of separable (m, F^) systems. 
I(m, F^): The number of equivalence classes of inseparable (m, F(jr)) systems. 
N[T, F{f)]\ The number of equivalence classes of (m, F^) systems of type T. 

When we discuss a fixed/, we sometimes abbreviate the above symbols as N(m), S(m), I(m), 
and N[T], omittingi7(/). 
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H(n7 r)\ The number of r-combinations with repetition of n distinct things, which is given by 

ur \ fn + r-l) (w + r -1) ! 

where we use the convention H(n, 0) = 1 for n > 0 as usual. 

Using the notations defined above, we can state the next theorem. 

Theorem 2: The numbers N[lXl2Xj ...rnXm], S(m), and I(m) are given by the following formulas: 

N[lx'2X2 ...mx»>] = UH(I(t)9Xt), (9) 

where the product is taken over t = 1,2,..., m; 

S(m) = m[lA>2^ ... (a!- l)A-» ] and I(m) = N[ml] = N(m) - S(m), 

where the summation is taken over all the integer partitions of m into more than one part or all of 
the (m-1)-tuples of nonnegative integers Xu X2,..., Xm_l satisfying 

l-Xl + 2-X2 + --+(m-l)Xm_l=rn. 

Proof: Let S = S(ah <J2,..., oy) be an (m, F(f)) system defined by (1). A system r/S(ah 

<r2, ..., <jf) equivalent to S, which is defined by (8), is given by replacing functions Fy\x) in all 
terms of (1) with Fy\r/(x)) for s = n +1, w, n -1,..., n - / +1, and rearranging the m equations so 
that r/(kys of the left-hand side become increasing in order. If the (my F ( / ) ) system S is separ-
able, then the nonempty subsets M'andM" in Definition 4, which are stable by o-1,c72, ...,oy, 
are mapped onto r/(M') and r/(M"), which are complements of each other and are stable by 
Wil1* WiH1? •••> Wf7!1- Therefore, it is clear that two equivalent systems have the same type 
and two systems of the same type are equivalent if and only if their r-parts are equivalent for 
f = l,2,...,m. 

The equivalence class of the £-part of S will be determined by the classes of I(t) to which 
Xt(t, F(jr)) subsystems of S belong, not depending on the location or the variables used in them. 
Therefore, the number of equivalence classes of the f-part with type tX{ of (m, F ( / ) ) systems is 
the number of Xt-combinations with repetition taken from I{t), which is denoted by H(I(t), Xt). 
Since different choices of an equivalence class for any £-part give different equivalence classes of 
(m, F^) systems of type T- \Xx2Xl ...mXm, their number will be represented by (9). 

Since N(m9 F^) is the sum of expression (9) for all the solutions of equation (3), and the 
only solution of (3) with Xm > 0 is given by Xx - X2 = • • • = Xm_x - 0 and Xm = 1, and the type of an 
inseparable (m, F^f)) system is ml, we have 

S(m) = N(m) - I(m) - N(m) - N[ml] = Y,N[\X'2X' ... (m - l)x^ ], 

and the proof is completed. 
Since we have only one equivalence class for (1, F^) system, the number of equivalence 

classes of (m,F^) systems of type r 1 ^ 2 ... (m - T)Xm~l for which Xt>0 must be equal to the 
number of equivalence classes of (m-\ F^) systems of type \Xx2Xl ...(m-l)Xm-\ so the total 
number of equivalence classes with nonempty 1-parts of (m, F^) systems is equal to N(m-l). 
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Since an (m, F^) system with an empty 1-part cannot have an (m-l)-part, we have another 
expression for S{m) and I(m) that is useful for inductive calculation. 

Corollary: S{m) = N(m -1) + Iff(7(2), Z2)H(I(3), A3) ... H(I(m- 2), Xm_2), where summation is 
taken over all the nonnegative integers A2, ̂ 3,•..., Aw_2 satisfying 2-A2 +3- A3 + -•+(m-2)'Xm_2 

= m and 7(m) = # | V ] = N(m) - S(m). 

The numbers of equivalence classes N[T] for 7 with small values of m and / = 2 and 3 are 
given in Table 2, where the number I{m) = JV[W] of equivalence classes of inseparable (m, F(jr)) 
systems can be found in the right-most column for each m. 

TABLE 2 
rn-2 m = 3 
7-< 

2 

3 

l2 \f 
1 1 3 

1 j 7 

> < 
2 

3 

I3 l^1 i 31 

1 3 j 7 

1 7 ; 41 

m=4 m = 5 
>< 

2 

3 

I5 132J 

1 3 

1 7 

123! 

7 

41 

1!22 

6 

28 

1!4! 

26 

604 

2*3* 

21 

287 

51 

97 

13753 

> < 
2 

3 

l4 

1 

1 

122] 

3 

7 

1!3! 

7 

41 

2 2 i 41 

6 i 26 

2 8 i 604 

m = 6 
>< 

2 

3 

l6 

1 

1 

142* 

3 

7 

133> 

7 

41 

1222 

6 

28 

124> 

26 

604 

l W 
21 

287 

W 23 2,41 

97 10 78 

13753 84 4228 

32 

28 

861 

61 

624 

504243 

m = 7 
> < J 

2 

3 

r 
i 

i 

I^1 

3 

7 

143' 

7 

41 

1322 

6 

28 

134' 

26 

604 

l W 

21 

287 

125' 

97 

13753 

1*23 

10 

84 

\l2W 

78 

4228 

l'3a 

28 

861 

1!6! 

624 

504243 

223] 

42 

1148 

2,51 

291 

96271 

3,41 

182 

24764 

71 

4163 

24824785 
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