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1. INTRODUCTION 

The algebraic structure count (ASC) of a graph G is 

ASC{G}d=^p*I], 

where A is the adjacency matrix of G. This quantity has noteworthy applications in chemistry (see 
below), provided that the graph G represents the carbon-atom skeleton of a molecule of a class of 
hydrocarbons, the so-called conjugated hydrocarbons [9]. Therefore, we call this graph by the 
same name as the respective hydrocarbon. 

Of particular importance for chemical applications are graphs that are connected, bipartite, 
and planar and which, when considered as plane graphs, have the property that every face-
boundary (cell) is a circuit of length of the form 4s+ 2 (s = 1,2,...) [2]. We refer to these graphs 
as benzenoid, noting, however, that the actual definition of benzenoid systems is slightly more 
complicated [8]. Molecular graphs that are connected, bipartite, and planar, but in which some 
face-boundaries are circuits of length of the form As (5 = 1,2,...) will be referred to as non-
benzenoid. The graphs studied in the present work belong to this latter class. 

In the case of benzenoid graphs, the ASC-value coincides with the number of perfect 
matchings (1 -factors), which is a result of crucial importance for chemical applications. Chemists 
call the 1 -factors Kekule structures [3], and these objects play significant roles in various chemical 
theories [8]. The enumeration of 1-factors in benzenoid graphs is not too difficult a task [3] and 
can be accomplished by various recursive methods. Consequently, the calculation of ASC of ben-
zenoid graphs is easy. 

In the case of non-benzenoid graphs, the relation between ASC and the number of perfect 
matchings is less simple and is given below (Theorem 2). Contrary to the former case, in this case 
the determination of the ASC-value is a nontrivial task because no efficient recursive graphical 
technique is known for computing ASC [5]. A systematic study of the ASC-values of non-
benzenoid conjugated systems was recently initiated by one of the present authors (see [6], [7]). 
Among others, in [7], the linear JXIphenylene [Fig. 1(a)] and the angular [«]phenylene [Fig. 1(b)] 
are considered. 

* This work was done at the Institute of Physical Chemistry, Attila Jozsef University, in Szeged, Hungary, while on 
leave from The Faculty of Science, University of Kragujevac, Kragujevac, Yugoslavia. 

1997] 75 



FIBONACCI NUMBERS AND ALGEBRAIC STRUCTURE COUNT OF SOME NON-BENZOID CONJUGATED POLYMERS 

FIGURE 1 
The Linear [nJPhenylene (a) and the Angular [AiJPhenylene (b); Algebraic Structure 

Counts of Angular Phenylenes are Fibonacci Numbers 

It is established that the ASC-value of the angular [«]phenylene is equal to the (w + 2)* Fibo-
nacci number (FQ = 0, Fx = 1, F2 = 1,...). It has been known for a long time [3] that the number 
of 1-factors (X-value) of the zig-zag chain A(ri) of n hexagons (circuits of length 6) (Fig. 2) is 
equal to the same number, i.e., 

K{A(n)} = F„+2. (1) 

FIGURE 2 
The Zig-Zag Hexagonal Chain A(n); Number of 1-Factors 

of A(n) Is a Fibonacci Number 

In this paper we show that the ASC-value of a class of non-benzenoid hydrocarbons can 
be expressed by means of Fibonacci numbers. This structure Bn = Bn(A(m^y Mm?),..., A{mn)) 
(which will be described in detail later) consists of n zig-zag chains concatenated by (n-\) 
squares (circuits of length 4). The manner of concatenation of two zig-zag chains by a square 
depends on the types (I-IV) of these zig-zag chains (which will also be defined later). The main 
result is the following statement. 

Theorem 1: If the graph Bn consists of n zig-zag chains of the same length m (m> 2) concate-
nated in the same manner, i.e., all zig-zag chains are of the same type, then 

1 ASC{iU = 2W+1 £1 + £*^J( F^ 
where 

£> = 

V ( ^ + 2 - ^ - 2 ) 2 + 4 - ( - i r + 1 , i f ^ i s o f t y p e l , 

V(^ + 2-^ , - i ) 2 +4-( - l ) m , M m ) is of type n o r m , 

V^2
+i+ 4-(-1)m + 1, if A(m) is of type IV, 

and 

76 [FEB. 



FIBONACCI NUMBERS AND ALGEBRAIC STRUCTURE COUNT OF SOME NON-BENZOID CONJUGATED POLYMERS 

F = { 

Fm_2, if A(m) is of type I, 
Fm_h if A(m) is of type II or III, 
Fm, if A{m) is of type IV. 

Before proving the validity of Theorem 1, we wish to mention a few more chemical aspects 
of the ASC-concept [4]. 

First of all, ASC is a well-defined quantity only for molecular graphs that are bipartite. There 
are two basic applications of ASC. First, if ASC = 0, then the respective conjugated hydrocarbon 
is predicted to have unpaired electrons. In practice, this means that this hydrocarbon is extremely 
reactive and usually does not exist. Second, thermodynamic stability of conjugated hydrocarbons 
is related to, and is a monotone increasing function of the ASC-value of the underlying molecular 
graph. In practice, this means that among two isomeric conjugated hydrocarbons, the one having 
greater ASC will be more stable. (Recall that the molecular graphs of isomeric hydrocarbons 
have an equal number of vertices and an equal number of edges.) 

In the case of benzenoid hydrocarbons, the above remains true if ASC is interchanged by 
K, the number of 1-factors [8]. In particular, not a single benzenoid hydrocarbon with K = 0 is 
known, whereas many hundreds of such hydrocarbons with K > 0 exist. 

In the case of benzenoid hydrocarbons, the following example (kindly suggested by the 
anonymous referee) illustrates another aspect of the role of 1-factors. Consider two isomers, A 
and B, consisting of n fused benzene rings (i.e., hexagons). Compound A consists of a linear 
arrangement of hexagons, and possesses w + 1 Kekule structures (1-factors). Compound B 
consists of a zig-zag arrangement of n hexagons (see Fig. 2); it possesses Fn+2 Kekule structures. 
The electron distribution in compounds A and B can be (as a reasonable approximation) obtained 
by averaging of the Kekule structures [8]. By means of this approach, one finds that compound A 
has very nearly double bonds at its ends (i.e., bonds the order of which is about 2), which implies 
a relatively high reactivity in this region of the molecule. In the case of compound B, the same 
averaging results in bond orders 1.618 (the golden ratio) at the terminal bonds, implying a signifi-
cantly greater chemical stability of B relative to A. 

Readers interested in further details of the chemical applications of 1-factors (including the 
theory of ASC) should consult the references quoted. 

2. COUNTING THE ASC-VALUE OF A BIPARTITE GRAPH 

Consider a bipartite graph G with n + n vertices, i.e., a graph all of whose circuits are of even 
length. Define a binary relation p in the set of all 1-factors of G in the following way. 

Definition 1: The 1-factors kx and k2 are in relation p if and only if the union of the sets of 
edges of kx and k2 contains an even number of circuits whose lengths are all multiples of 4. 

It can be proved that this binary relation is an equivalence relation and subdivides the set of 
1-factors into two equivalence classes [2]. In [2] this relation is called "being of the same parity" 
and the numbers of these classes are denoted by K+ and AL. The following theorem by Dewar 
and Longuet-Higgins [2] connects the ASC-value of G and the numbers K+ and K~. 

Theorem 2: det A = (-!)"(*+ - K.f. 
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This theorem implies ASC{G} = J\detA\ = \K+-K.\. 

In the case of benzenoid hydrocarbons all 1-factors are in the same class, i.e., one of the 
numbers K+ or K- is equal to zero. This follows directly from Definition 1. Hence, ASC{G} = 
K{G}. It does not hold in the case of non-benzenoid hydrocarbons. In this case, the following 
theorem can be useful for evaluating the ASC-value. 

Theorem 3: Two 1-factors kx and k2 are in distinct classes (of opposite parity) if one is obtained 
from the other by cyclically rearranging an even number of edges. In other words, two 1-factors 
k{ and k2 are in distinct classes if the union of the sets of edges of kx and k2 contains just a single 
circuit, and the length of this circuit is a multiple of 4. 

Proof: Theorem 3 follows directly from Definition 1. 

3. THE STRUCTURE OF THE CONSIDERED GRAPH 

The graph Bn = Bn(Xh X2,..., Xn) considered in this paper is obtained from the linear 
[«]phenylene [Fig. 1(b)] by replacing its /* hexagon with a zig-zag chain, labeled by Xi 

(Xj = A(mi)) for i = l,...,w [Fig. 3(a)]. The places of concatenation are the edges f^PM 
(i = 2,...,n) and gi = rtst (/ = 1,2,..., n -1) which belong to the terminal hexagons of the zig-zag 
chain. In the graph Bn, the valencies of the vertices pi9 qt, rt_l9 and ^_x (i = 2, 3,..., n) are equal 
to 3. Recall that the notation Bn(A(m^), A^),..., A{mn)) does not uniquely determine a graph, 
because for a unique characterization the places of concatenations also need to be specified (as 
discussed in detail below). 

Figure 3(b) shows one of the possible structures of the graph B4(A(3), A(4), A(4), A(2)). 

FIGURE 3 
The Graph Bn = BH(XVX29...9Xn) (a) and Its Special Case B4(A(3), A(4)9 A(4)9 A{2)) (b); 

Note that the Symbol B4(A(3)9 A(4)9 A(4)9 A(2j) Does Not Specify a Unique Graph 

The present authors considered in [1] the generalization of the structure of the type Bn [Fig. 
3(a)], where Xt are arbitrary bipartite graphs all of whose 1-factors are of equal parity, i.e., 
Asc{jr/} = ^{jr/} 

Consider now a zig-zag segment A{mi) of B„. Let THJr = 1. Then (see Fig. 4) there are two 
possible choices of the edges ft andg depending on whether these edges are parallel or not (note 
that we can always represent squares and hexagons as regular k-gons). 
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FIGURE 4 
Two Ways of Choosing the Edges /.' and gt in a Hexagon 

If in > 2, then there are four types of the zig-zag chains A{mi), depending on the choices of 
the edges fi andg, according to whether or not these edges are parallel to the edge in common 
of the hexagon containing the considered edge and its adjacent hexagon (see Fig. 5). 

Ill 

IV /;' 

FIGURE 5 
Four Ways of Choosing the Edges ft and gt in a Zig-Zag Chain A^) 

Note that in the type II and type III we have two possibilities for the edge pair fi9 gt and in 
the type IV we have four such possibilities. 

4. A METHOD FOR CALCULATING THE ASC-VALUE OF THE GRAPH Bn 

Observe that edges belonging to a 1-factor of Bn (marked by double lines in Fig. 6) can be 
arranged in and around a four-membered circuit in exactly five different ways. This is the conse-
quence of the fact that the fragments of Bn lying on the left- and right-hand side of the four-
membered circuit (not shown in Fig. 6) both possess an even number of vertices. If the number of 
vertices in these fragments would be odd (which, according to the way in which B„ is con-
structed, is impossible), then every 1-factor of Bn would contain one horizontal edge of the four-
membered circuit, and would not contain the other. 
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V / y/ V 

y \ // ^ / \ / \ / \ 
1 2 3 4 5 

FIGURE 6 
Arrangements of Edges in 1-Factors of Bn 

The modes 4 and 5 are interconverted by rearranging two (an even number) edges of the 1-
factor. According to Theorem 4, modes 4 and 5 are of opposite parity. Consequently, they need 
not be taken into account when the algebraic structure count is evaluated. The 1-factors of Bn 

that do not contain arrangements of mode 4 or 5 are called good, and their number is denoted by 
K{Bn). Note that the horizontal edges of squares are never in a good 1-factor. Hence, the edges 
of good 1-factors can be rearranged only within each fragment Xr This implies that all good 1-
factors of Bn are of equal parity, i.e., 

ASC{B„} = K{B„}. (2) 

We now enumerate the good 1-factors of Bn using the so-called transfer matrix method [2]. For 
that purpose, we define auxiliary subgraphs XUj in the following way: 

*,.i = */-C/5)-(&),l 
Xi,2 = Xi-(fi)-gi, 
xi.* = xi-fi-gi-

(3) 

(The subgraph G-e is obtained from G by deleting the edge e and the subgraph G-(e) is 
obtained from G by deleting both the edge e and its terminal vertices.) To simplify the notation, 
denote K{Xf j} by Kt j . Observe that Kf X-Kj 4 are equal to the number of 1-factors of Xt in 
which one of the following four conditions is fulfilled. In particular: 

• KXi counts the 1-factors containing both edges f and gi 
(we say that this class of the 1-factors of Xt is assigned to the graph Xu 2); 

• Kj 2 counts the 1-factors containing the edge f and not containing the edge gt 
(this class is assigned to the graph Xu 2); 

• ^ 3 counts the 1-factors that do not contain ft and do contain gi 
(this class is assigned to the graph Xu 3); 

• Kf 4 counts the 1-factors containing neither ft nor gt 
{assigned to the graph Xu4). 

Evidently, the above four cases cover all possibilities. 
Now, we associate with each 1-factor of Bn a word jj2 ...jn of the alphabet {1,2,3,4} in the 

following way: If the considered 1-factor induces in Xt a 1-factor that is assigned to the graph 
XiJy then jt =j. Note that by choosing the edges of the 1-factor in Xt and Xi+l (i.e., by 
choosing subwords jji+l) we must not generate one of modes 4 or 5 of arrangements of the 
1-factor in the square between Xj and Xi+l, i.e., the subwords jji+l must not belong to the set 
{11,12,31,32}. 
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Let 2r„ be the set of all words in '{1,2,3,4}", in which the subwords 11, 12, 31, and 32 are 
forbidden. Then, according to (2), we have 

ASC{5„}= £ K^K^,...,^. 
j\j2...jne% 

(4) 

It can be shown that the set 2T„ has 4-3 elements. Hence, there are 4-3" * summands on the 
right-hand side of (4). 

Let 

Mt = 

0 0 X,3 KiA 
Ki,l Ki,2 Ki,3 Ki,A 

0 0 X,3 K,4 
Ki,l Ki,2 Ki,3 Ki,4 

Keeping (4) in mind, we see that the ASOvalue of Bn is equal to the sum of all elements of the 
last row in the product of transfer matrices IIJLi Miy i.e., 

ASC{B„} = fd(M1-M2 M„\k- (5) 
k=l 

In our case, the subgraphs Xi are zig-zag chains and the value ASC{Bn} is equal to the sum of 
the products of some Fibonacci numbers, i.e., the following statement holds. 

Lemma 1: For every type of zig-zag chain A(mj), the quantities KjrKu4 are equal to some 
Fibonacci numbers. 

Proof: Note that all 1-factors of A(m) can be divided into four classes (a)-(d) according to 
which edges in the terminal hexagons belong to the 1-factor (see Fig. 7). Observe that the num-
bers of elements in classes (a)-(d) are Fibonacci numbers Fm_2, Fm_ly Fm_l9 and Fm, respectively. 
Evidently, their sum is equal to ^{^[(w;)}, i.e., Fm+2. 

K{A(m-A)} = Fm_2 

K{A(m-2)} = Fm_l 

K{A(m-3)} = Fm_l 

\ 7 / K{A(m-2)) = FTT 

FIGURE 7 
Classes of 1-Factors of A(m) 
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Now, if the zig-zag chain is of type I (Fig. 5), then the four numbers A)fl-X)f4 represent a 
cardinal number of classes (a)-(d) in Figure 7, respectively. Therefore, we can write 

[KiA, Ku2, K,3, KiA] = [ i v 2 , Fmi_h Fmi_h i y - f o r type I. (6) 

Similarly, we obtain: 
[*,!, * j , 2 , X,3, Kh4] = [F^, Fmi_2, Fmt, F ^ . J - f o r type II; (7) 

[K,A, K,t2, Kh3, Kt,4] = [F^, Fmi, F^_2, F^-for type III; (8) 

[K,^ A)>2, K,3, ^ , 4 ] = [^., Fmi_h F^_„ Fm._2]-fortypeIV. (9) 

5. PROOF OF THEOREM 1 

Let all zig-zag chains Airn^ be of the same length m (m = ml = m2=--= mn) and of fixed 
type. Then we can write Kj instead of K^ . (J = 1,..., 4) and M instead of Mt. Then expression 
(5) reduces to ASC{fi„} = I?k=l{M"\ k, where 

M = 
0 
K, 
0 
Kl 

0 
K2 
0 

K2 

K3 
K3 
K3 
K3 

K4 
K4 
K4 
K4 

The characteristic equation of Mis 

tf-[K2+K3 + K4]£+[K2K3-KxK4]£ = 0, 

and its eigenvalues are Xx - X2 = 0, X3 = [L-D]12, and X4 = [L + D]/2, where 

L = K2+K3+K4 & D = JlF+4(KlK4-K2K3). 

(10) 

(11) 

Note that D = y](K2 - K3f + K4(4KX + 2K2 + 2K3 + Z4) and is equal to 0 if and only if K2 = K3 

and K4 = 0. Further, recall the Cayley-Hamilton theorem which says that each square matrix sat-
isfies its own characteristic equation. If we label with n^ j(n) the (7,7}-entry in the matrix Mw, 
then using the mentioned theorem we obtain that the sequence rntj(n) [and, consequently, the 
sequence ASCj^} = Zy=1/w4j(n)] satisfies a difference equation. The coefficients of this differ-
ence equation are obtained from the characteristic polynomial of M", i.e., from equation (10). 
Thus, the desired recurrence relation for the algebraic structure count of the graph Bn is 

ASC{5n} = (K2 + K3 +K4)ASC{B„.l} + (K,K4 - K2K3)ASC{Bn_2} (12) 
with initial conditions 

A$C{Bl} = Kl+K2+K3 + K4 & ASC{B2} 
= (Kl+K3)(K3 + k4) + (K2+K4)(Kl+K2^K3 + K4y 

Solving the recurrence relation (12), we obtain the following general solution: 

ASC{Bn} = 
{nKx+{n + \)K2)K[ n~\ if K2=K3 & K4 = 0, 

12 
1 + ̂ )(L + D)" + (1 -^)(L - D)n] otherwise, 

(13) 
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where L and D are given by (11). We arrive at the generating function for the sequence ASC{£„} 
by standard methods of the theory of difference equation 

ASC(x) = ^ ^ 
<X^3 - KxK4)x2 -(K2+K3 + K4)x + l' 

Since ASC(x)d= ^=Q ASC{Bn}x\ this implies 

ASC{5lf} = ^fASC<l,>(0). 

In our case, the fragments Xi are zig-zag chains A(m) with a fixed number of hexagons (m) of 
fixed type. 
* The case m = 1 was considered in [7]. For the sake of completeness, we recall that 

ASC{5„} = n +1, if A{\) is of type I [Fig. 4(a)] (the linear phenylene), 
ASC{B„) = Fn+2, if 4(1) is of type II [Fig. 4(b)] (the angular phenylene). 

• In the case m = 2, we have to use both terms in (13). So, using relations (6)-(9) in (13), we 
obtain 

ASC{5II} = 

i K ^ r - l ^ n if^(2)isoftypeI, 

{[(1 + V2)"+1 + ( 1 - V5)"+1], if 4(2) is of type II orlll, 

2w + l, if4(2)isoftypeIV. 

# For the case m>2, all K^ (i: = 1,...,4) numbers are positive, so we apply only the second 
term in (13). Bearing in mind relations (6)-(9) again and the well-known relations for the 
Fibonacci numbers, F^_l-FmFtn_2 = (-l)m and Fm_2 + 2Fm_x 4-Fm = Fm+2, the required state-
ment of Theorem 1 follows. 
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