Peter Hilton

Department of Mathematical Sciences, State University of New York, Binghamton, NY 13902-6000 and Department of Mathematics, University of Central Florida, Orlando FL 32816-6990

Jean Pedersen

Department of Mathematics, Santa Clara University, Santa Clara, CA 95053

Lawrence Somer

Department of Mathematics, Catholic University of America, Washington, DC 20064 (Submitted June 1995)

1. INTRODUCTION

Let u(r, s) and v(r, s) be Lucas sequences satisfying the same second-order recursion relation

$$w_{n+2} = rw_{n+1} + sw_n \tag{1}$$

and having initial terms $u_0 = 0$, $u_1 = 1$, $v_0 = 2$, $v_1 = r$, respectively, where r and s are integers. We note that $\{F_n\} = u(1, 1)$ and $\{L_n\} = v(1, 1)$. Associated with the sequences u(r, s) and v(r, s) is the characteristic polynomial

$$f(x) = x^2 - rx - s \tag{2}$$

with characteristic roots α and β . Let $D = (\alpha - \beta)^2 = r^2 + 4s$ be the discriminant of both u(r, s) and v(r, s). By the Binet formulas

$$u_n = (\alpha^n - \beta^n) / (\alpha - \beta) \tag{3}$$

and

$$v_n = \alpha^n + \beta^n. \tag{4}$$

We say that the recurrences u(r, s) and v(r, s) are degenerate if $\alpha\beta = -s = 0$ or α / β is a root of unity. Since α and β are the zeros of a quadratic polynomial with integer coefficients, it follows that α / β can be an n^{th} root of unity only if n = 1, 2, 3, 4, or 6. Thus, u(r, s) and v(r, s) can be degenerate only if r = 0, s = 0, or $D \le 0$.

We say that the integer *m* is a *divisor* of the recurrence w(r, s) satisfying the relation (1) if $m|w_n$ for some $n \ge 1$. Carmichael [2, pp. 344-45], showed that, if (m, s) = 1, then *m* is a divisor of u(r, s). Carmichael [1, pp. 47, 61, and 62], also showed that if (r, s) = 1, then there are infinitely many primes which are not divisors of v(r, s). In particular, Lagarias [4] proved that the set of primes which are divisors of $\{L_n\}$ has density 2/3. Given the Lucas sequence v(r, s), we say that the integer *m* is *Lucasian* if *m* is a divisor of v(r, s). In Theorems 1 and 2, we will show that, if u(r, s) and v(r, s) are nondegenerate, then u_n is not Lucasian for all but finitely many positive integers *n*. We will obtain stronger results in the case for which (r, s) = 1 and D > 0.

A related question is to determine all a and b such that v_a divides u_b . Using the identity $u_a v_a = u_{2a}$, one sees that v_a always divides u_{2a} . Since $u_{2a}|u_b$ if 2a|b, we have that $v_a|u_b$ if 2a|b. We will show later that if $rs \neq 0$, (r, s) = 1, $|v_a| \ge 3$, and $v_a|u_b$, then 2a|b.

1997]

Theorem 1: Consider the Lucas sequences u(r, s) and v(r, s). Suppose that $rs \neq 0$, (r, s) = 1, and D > 0. Let a and b be positive integers. Then $u_a | v_b$ if and only if one of the following conditions holds:

- (*i*) a = 1;
- (*ii*) |r| = 1 or 2 and a = 2;
- (iii) $|r| \ge 3, a = 2$, and b is odd;
- (iv) |r| = 1, s = 1, a = 3, and 3|b;
- (v) |r| = 1, a = 4, and 2|b oddly, where m|n oddly if n/m is an odd integer.

In particular, $u_n, n \ge 5$, is not Lucasian.

Theorem 2: Consider the nondegenerate Lucas sequences u(r, s) and v(r, s). If (r, s) = 1 and D < 0, then u_n is not Lucasian for $n > e^{452}2^{68}$. If (r, s) > 1, then there exists a constant N(r, s) dependent on r and s such that u_n is not Lucasian for $n \ge N(r, s)$.

2. NECESSARY LEMMAS AND THEOREMS

The following lemmas and theorems will be needed for the proofs of Theorems 1 and 2.

Lemma 1: $u_{2n} = u_n v_n$.

Proof: This follows from the Binet formulas (3) and (4) and is proved in [6, p. 185] and [3, Section 5]. \Box

Lemma 2:

$$u_n(-r,s) = (-1)^{n+1} u_n(r,s).$$
(5)

$$v_n(-r,s) = (-1)^n v_n(r,s)$$
 (6)

Proof: Equations (5) and (6) follow from the Binet formulas (3) and (4) and can be proved by induction. \Box

Lemma 3: Let u(r, s) and v(r, s) be Lucas sequences such that $rs \neq 0$ and $D = r^2 + 4s > 0$. Then $|u_n|$ is strictly increasing for $n \ge 2$. Moreover, if $|r| \ge 2$, then $|u_n|$ is strictly increasing for $n \ge 1$. Furthermore, $|v_n|$ is strictly increasing for $n \ge 1$.

Proof: By Lemma 2, we can assume that $r \ge 1$. The results for $|u_n|$ and $|v_n|$ clearly hold if $s \ge 1$. We now assume that $r \ge 1$ and $s \le -1$. Since D > 0, we must have that $-r^2/4 < s \le -1$, which implies that $r \ge 3$. We will show by induction that, if w(r, s) is any recurrence satisfying the recursion relation (1) for which $w_0 \ge 0$, $w_1 \ge 1$, and $w_1 \ge (r/2)w_0$, then $w_n \ge 1$ and $w_n \ge (r/2)w_{n-1}$ for all $n \ge 1$. Our results for u(r, s) and v(r, s) will then follow. Assume that $n \ge 1$, and that $w_n \ge 1$, $w_{n-1} \ge 0$, $w_n \ge (r/2)w_{n-1}$. Then $w_{n-1} \le (2/r)w_n$. By the recursion relation defining w(r, s), we now have

$$w_{n+1} = rw_n + sw_{n-1} > rw_n - (r^2/4)(2/r)w_n = (r/2)w_n$$

so that $w_{n+1} \ge 1$ and the lemma follows. \Box

Lemma 4: Consider the Lucas sequences u(r, s) and v(r, s). Then $u_n | u_{in}$ for all $i \ge 1$ and $v_n | v_{(2j+1)n}$ for all $j \ge 0$.

44

FEB.

Proof: These results follow from the Binet formulas (3) and (4).

Lemma 5: Consider the Lucas sequences u(r, s) and v(r, s) for which (r, s) = 1 and r and s are both odd. Then u_n even $\Leftrightarrow v_n$ even $\Leftrightarrow 3|n$.

Proof: Both sequences are congruent modulo 2 to the Fibonacci sequence, for which the result is trivial. \Box

For the Lucas sequence u(r, s), the rank of apparition^{*} of the positive integer *m*, denoted by $\omega(m)$, is the least positive integer *n*, if it exists, such that $m|u_n$. The rank of apparition of *m* in v(r, s), denoted by $\overline{\omega}(m)$, is defined similarly.

Lemma 6: Consider the Lucas sequences u(r, s) and v(r, s). Let p be an odd prime such that $p \nmid (r, s)$. If $\omega(p)$ is odd, then $\overline{\omega}(p)$ does not exist and p is not Lucasian.

Proof: This was proved by Carmichael [1, p. 47] for the case in which (r, s) = 1. The proof extends to the case in which $p \nmid (r, s)$. \Box

Lemma 7: Consider the Lucas sequences u(r, s) and v(r, s). Suppose that p is an odd prime such that $p \nmid (r, s)$ and $\omega(p) = 2n$. Then $\overline{\omega}(p) = n$.

Proof: This is proved in Proposition 2(iv) of [10]. \Box

We let $[n]_2$ denote the 2-valuation of the integer *n*, that is, the largest integer *k* such that $2^k | n$.

Lemma 8: Consider the Lucas sequence v(r, s). Suppose that *m* is Lucasian and that *p* and *q* are distinct odd prime divisors of *m* such that $pq \downarrow (r, s)$. Then $[\overline{\omega}(p)]_2 = [\overline{\omega}(q)]_2$.

Proof: This is proved in Proposition 2(ix) of [10]. \Box

Theorem 3: Let u(r, s) and v(r, s) be Lucas sequences such that $rs \neq 0$ and (r, s) = 1. Let a and b be positive integers and let d = (a, b).

(i)
$$(u_a, u_b) = u_d;$$

(ii) $(v_a, v_b) = \begin{cases} v_d & \text{if } [a]_2 = [b]_2, \\ 1 \text{ or } 2 & \text{otherwise}; \end{cases}$
(iii) $(u_a, v_b) = \begin{cases} v_d & \text{if } [a]_2 > [b]_2, \\ 1 \text{ or } 2 & \text{otherwise}. \end{cases}$

Proof: This is proved in [7] and [3, Section 5]. \Box

Remark: It immediately follows from the formula for (v_a, u_b) that if $rs \neq 0$, (r, s) = 1, and $|v_a| \ge 3$, then $v_a | u_b$ if and only if 2a | b. Noting that $v_2 = r^2 + 2s$, we see by Lemma 3 that if $rs \neq 0$ and $D = r^2 + 4s > 0$, then $|v_a| \ge 3$ for $a \ge 2$.

We say that the prime p is a primitive prime divisor of u_n if $p|u_n$ but $p|u_i$ for $1 \le i < n$.

1 1

^{*} Plainly, "apparition" is an intended English translation of the French "apparition." Thus, "appearance" would have been a better term, since no ghostly connotation was intended!

Theorem 4 (Schinzel and Stewart): Let the Lucas sequence u(r, s) be nondegenerate. Then there exists a constant $N_1(r, s)$ dependent on r and s such that u_n has a primitive odd prime divisor for all $n \ge N_1(r, s)$. Moreover, if (r, s) = 1, then u_n has a primitive odd prime divisor for all $n > e^{452}2^{67}$.

Proof: The fact that the constant $N_1(r,s)$ exists for all nondegenerate Lucas sequences u(r, s) was proved by Lekkerkerker [5] for the case in which D > 0 and by Schinzel [8] for the case in which D < 0. The fact that if u(r, s) is a nondegenerate Lucas sequence for which (r, s) = 1, then an absolute constant N, independent of r and s, exists such that u_n has a primitive odd prime divisor if n > N was proved by Schinzel [9]. Stewart [11] showed that N can be taken to be $e^{452}2^{67}$. \Box

3. PROOFS OF THE MAIN THEOREMS

We are now ready for the proofs of Theorems 1 and 2.

Proof of Theorem 1

46

By Lemma 4 and inspection, it is evident that any of conditions (i)-(iv) implies that $u_a | v_b$. Now suppose that $|r| \ge 3$, a = 2, and $u_a | v_b$. Then $|u_a| = |v_1| = |r| \ge 3$. By Theorem 3(ii), we see that b is odd. By Lemma 5, if $r = \pm 1$, s = 1, $u_a | v_b$, and a = 3, then 3|b. Suppose next that |r| = 1, a = 4, and $u_a | v_b$. Since $D = r^2 + 4s > 0$, we must have that $s \ge 1$. Then, by Lemma 1, $|u_a| = |v_2| = 2s + 1 \ge 3$. By Theorem 3(ii), it follows that 2|b oddly.

We now note that if D > 0 and $rs \neq 0$, then $|u_a| \le 2$ if and only if a = 1, $or |r| \le 2$ and a = 2, or |r| = 1, s = 1, and a = 3. Thus it remains to prove that

$$f u_a |v_b \text{ and } |u_a| \ge 3, \text{ then either}$$

$$|r| \ge 3 \text{ and } a = 2, \text{ or}$$

$$|r| = 1 \text{ and } a = 4.$$
(7)

We prove (7) by first proving a lemma which is, in fact, a weaker statement, namely,

Lemma 9: If D > 0, $rs \neq 0$, (r, s) = 1, $|u_a| = |v_b|$, and $|u_a| \ge 3$, then either $|r| \ge 3$ and a = 2, or |r| = 1 and a = 4.

Proof of Lemma 9: Since $|u_a| = |v_b| \ge 3$, $(u_a, v_b) = |v_b| \ge 3$. Thus, by Theorem 3(iii), we conclude that $[a]_2 > [b]_2$; hence, $(u_a, v_b) = |v_d|$, where d = (a, b). Thus, $|v_b| = |v_d|$; but by Lemma 3, $|v_n|$ is an increasing function of n for n positive. Therefore, b = d and b|a. Since $[a]_2 > [b]_2$, we have that 2b|a and so, by Lemmas 1 and 4, $v_b|u_{2b}|u_a$. But $|u_a| = |v_b|$. Hence, by Lemma 1, $|u_{2b}| = |v_b| = |v_b u_b|$, and so $|u_b| = 1$. Since $|u_n|$ is an increasing function of n for $n \ge 2$ by Lemma 3, we see that b = 1 or 2. We can only have that b = 2 if |r| = 1. However, $|v_b| \ge 3$, so either b = 1 and $|u_a| = |v_b| = |r| \ge 3$, implying that a = 2, or b = 2, |r| = 1, $s \ge 1$, and $|u_a| = |v_b| = 2s + 1 \ge 3$, which implies that a = 4.

Proof of (7): Since $u_a | v_b$ and $| u_a | \ge 3$, we have that $(u_a, v_b) = | u_a | \ge 3$. Using Theorem 3(iii), we infer as in the proof of Lemma 9 that $| u_a | = | v_d |$, where d = (a, b). Hence, by Lemma 9, either $|r| \ge 3$ and a = 2, or |r| = 1 and a = 4. \Box

[FEB.

Proof of Theorem 2

First, suppose that (r, s) = 1. Now suppose that $n > 3^{452}2^{68}$ and *n* is odd. By Theorem 4, u_n has a primitive odd prime divisor *p*. By Lemma 6, *p* is not Lucasian and hence u_n is not Lucasian. Now suppose that $n > 3^{452}2^{68}$ and *n* is even. Then, by Theorem 4, $u_{n/2}$ has a primitive odd prime divisor p_1 , and u_n has a primitive odd prime divisor p_2 . By Lemma 8, p_1p_2 is not Lucasian. Since $u_{n/2} | u_n$ by Lemma 4, we see that u_n is not Lucasian.

Now suppose that (r, s) > 1. By Theorem 4, there exists a constant $N_1(r, s) > 2$, dependent on r and s, such that if $n > N_1(r, s)$, then u_n has a primitive odd prime divisor. We note that if p is a prime and p|(r, s), then $\omega(p) = 2$. Taking $N(r, s) = 2N_1(r, s)$, we complete our proof by using a completely similar argument to the one above. \Box

ACKNOWLEDGMENT

We wish to thank the anonymous referee for several suggestions which helped to improve this paper.

REFERENCES

- 1. R. D. Carmichael. "On the Numerical Factors of the Arithmetic Forms $\alpha^n \pm \beta^n$." Ann. Math. (Second Series) 15 (1913):30-70.
- 2. R. D. Carmichael. "On Sequences of Integers Defined by Recurrence Relations." Quart. J. Pure Appl. Math. 48 (1920):343-72.
- 3. P. Hilton & J. Pedersen. "Fibonacci and Lucas Numbers in Teaching and Research." Journées Mathématiques & Informatique 3 (1991-1992):36-57.
- J. Lagarias. "The Set of Primes Dividing the Lucas Numbers Has Density 2/3." Pacific J. Math. 118 (1985):449-61.
- 5. C. G. Lekkerkerker. "Prime Factors of the Elements of Certain Sequences of Integers." Proc. Amsterdam Akad. (Series A) 56 (1953):265-80.
- E. Lucas. "Théorie des fonctions numériques simplement périodiques." Amer. J. Math. 1 (1878):184-220, 289-321.
- 7. W. L. McDaniel. "The G.C.D. in Lucas and Lehmer Sequences." *The Fibonacci Quarterly* 29.1 (1991):24-29.
- A. Schinzel. "The Intrinsic Divisors of Lehmer Numbers in the Case of Negative Discriminant." Ark. Mat. 4 (1962):413-16.
- 9. A. Schinzel. "Primitive Divisors of the Expression $A^n B^n$ in Algebraic Number Fields." J. Reine Angew. Math. 268/269 (1974):27-33.
- 10. L. Somer. "Divisibility of Terms in Lucas Sequences of the Second Kind by Their Subscripts." To appear in *Applications of Fibonacci Numbers* 6.
- 11. C. L. Stewart. "Primitive Divisors of Lucas and Lehmer Numbers." In *Transcendence Theory: Advances and Applications*, pp. 79-92. Ed. A. Baker and D. W. Masser. London: Academic Press, 1977.

AMS Classification Number: 11B39
