
ON THE PROPORTION OF DIGITS IN REDUNDANT 
NUMERATION SYSTEMS* 

Jon T. Butler 
Dept. of Electrical and Comp. Eng., Naval Postgraduate School, Code EC/Bu, Monterey, CA 93943-5121 

Tsutomu Sasao 
Dept. of Computer Science and Electronics, Kyushu Institute of Technology, lizuka 820, Japan 

(Submitted January 1996) 

1. INTRODUCTION 

In the standard binary numeration system, an #-bit integer N is uniquely represented as the 
sum of powers of 2. Specifically, 

N = a^T1-1 +a„„22w"2 + - +a222 +at2l +aQ2\ 

where at is either 0 or L As is common, JVcan be represented as an w-tuple of 0ss and l's, where 
the position of the bit determines the power of 2 involved. For example, in a 4-bit standard binary 
numeration system, N = 0101 = 5, since 5 is equivalent to 22 +2°. Newman ([13], p. 2422) sug-
gests that the Chinese used the binary numeration system around 3000 B.C. 

Instead of powers of 2fs, if Fibonacci numbers are used, then an alternate numeration system 
(viz. Zeckendorf [14]) occurs in which an integer N may have more than one representative. That 
is, let 

N = an_tFn+l +an_2Fn + <°-+a2F4 +alF3+aQF2, (1) 

where Ff is the Ith Fibonacci number. For example, 1000 = 0110 = 5 in the Fibonacci numeration 
system, where 5 is equivalent to both F5 and F4 + F3. It is known (e.g., Brown [1]) that an w-
tuple of 0's and l's is a unique representative of N if every pair of lfs is separated by at least one 0. 
Under this restriction, we view 1000 as the representative of 5 and 0110 as the redundant repre-
sentative. Brown [2] showed that, if one represents an integer by the w-tuple with the most lfs, 
then this representative is unique. In this case, we view 0110 as the representative of 5 and 1000 
as the redundant representative. 

Representations of this type have important advantages. For example, in a CD-ROM, three 
or more consecutive l's cannot be read reliably (Davies [4]). Motivated by this, Klein [11] inves-
tigated Fibonacci-like representations of the form (1), where Fi=Fi_l+Fi_m for />zw + l, and 
Ft=i-l for 1 <i <m +1. The case m = 2 corresponds to the Zeckendorf representation using 
Fibonacci numbers. 

Kautz [9] uses such representations in a data transmission system where the receiver clock is 
synchronized to the transmitter clock using only the data. Toward this end, he uses code words in 
which there are neither strings of l's of length greater than m nor strings of 0fs of length greater 
thanw. 

Dimitrov and Donevsky [5] show that the number of steps required to multiply two «-bit 
numbers represented in the Zeckendorf numeration system using Quadranacci numbers is less than 
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that required by two numbers represented as standard binary numbers. That is, even though the 
Zeckendorf representation requires more bits, its efficiency in the multiplication process more than 
compensates for extra operations because of larger word size. Indeed, the Zeckendorf represen-
tation outperforms both standard binary multiplication and multiplication using the more efficient 
multiplication algorithm for n -> QO when the number of bits in the standard binary representation 
is 131 through 1200. 

The question posed and answered in this paper is: To what extent does redundancy occur in 
certain redundant numeration systems? The question has important consequences for both the 
efficiency of number representations and the transmission of data. We analyze redundancy in two 
ways: 1) the number of distinct representative w-tuples for some given n and 2) the proportion of 
digits used in nonredundant representatives. Table 1 shows the numeration systems considered in 
this paper and the corresponding recurrences, basis elements, and references. 

TABLE 1, Selected Numeration Systems*, Recurrences, and Basis Elements 
|lllillilpiKlll|l 
1 Standard binary 
1 Zeckendorf 
1 - - Fibonacci 
1 Gen. Fibonacci 

- - Tribonacci 
- - Quadranacci 
Generalization 
of Fibonacci 
Numbers 

\m - ary 
Numbers 

^ ^ ^ ^ ^ j i ^ ^ ^ ^ ^ ^ ^ ^ ^ K 
Fi = 2 F M 

FI = Fi.i + Fi.2 

Fi = Fi.i + F/.2 + ...+Fi.m 

fi = Fi-l + Fi-2 + Fi-3 
Ft = Fi.i + Fi-2 + F.-.3 + F M 

Ft = Fi.i + Fi.m 

Fi = Fi.i + F/.3 
Ft = FiA + F M 

Ft = mFi.i - Fi.2 

Fi = 3F M - F^ 
Fi = 4 F M - Fi.2 

SBB^^fflHIHi 
... 2? T^lFlFl1 21 2° 
. . .21 13 8 5 3 2 1 

... 44 24 13 7 4 2 1 

... 56 29 15 8 4 2 1 

... 13 9 6 4 3 2 1 

... 10 7 5 4 3 2 1 

... 144 55 21 8 3 1 

... 780 209 56 15 4 1 

ipiiipiiil 
[7,8,12,13] 
[1,2,3,14] 

[3,9] 

[11] 

[11] 

2. BINARY NUMERATION SYSTEMS 

Consider a numeration system in which the basis elements are (...,F4,F3,F2), where Ft = 
iVi+iV2 + e"+^/-w f°r i>m + l, and Ff =2j~2 for 1 <i </w + l, where m>2. Consider a repre-
sentative n-tuple T=(an_ml9an_2,...9al,a0), where at e{0,l}. From [3] and [6], if no more than 
m-\ consecutive a/s are 1, then J is a unique representative of N = ZJTo ai^l+2• ^ e c a e w " t e 

the regular expression (see [10], pp. 617-23) for the allowed representatives as 

R = (A + l + l 2 + l 3 + ••• + l,,,"1X0(A + l + l2 + l3 + •••+l',,-1))*. (2) 

Here, a* = {A,a,aa,aaa,...}, where X is the empty string, and 1' denotes / consecutive l's. 
Thus, this expression represents the set of strings consisting of substrings beginning with i Ts, for 
0 < i < m - 1 , followed by a sequence of substrings each of the form 0,01, 011,..., or 0 lm_1. From 
(2), we can derive a generating function N(x, y, z) for the number of representatives and the 
number of 0's and l's in these representatives. Let x track the number of bits, y track the number 
of 0!s, and z track the number of l's. Then, a typical term in the power series expansion of 
N(x, y, z) is %nij xnyjzJ for n = i + j , where ^nij is the number of representative w-tuples with i 0fs 
and7 l's. We can write 
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^m-\„m-\\ N(x, y, z) = (1 + xz + x V + • • • + xm-lzm~l) 1 - xy{\ + xz + x2z2 + • • + xm'lzm-1 (3) 

-\rn-l where the first term represents the leftmost substring, which can be nothing, 1, 1 , ..., or 1" 
while the second term represents the ways to choose 0, 01, 012, ..., and 0V"'1. We can rewrite 
(3) as follows: 

N(x,y,z) = \-xmzn 

l-xz 
1 

^ 

1 •vi1^-) 
From this we can generate, for example, the distribution of 16-tuples with / Vs for 0< / < 15, as 
shown in Figure 1. It is interesting that the number of representative ^-tuples increases markedly 
from m = 2 to m = 3; for m = 7, the distribution is almost binomial. The fact that it is not exactly 
binomial can be seen by its asymmetry. Capocelli, Cerbone, Cull, and Hollaway [3] derive an 
expression for the average proportion, PVs, of bits that are 1, when the number n of bits is large. 
Table 2 shows this. In the Zeckendorf numeration system using Fibonacci numbers (m = 2)9 the 
average proportion of l's is near 25%. However, as m increases from 2, this value approaches 
50%. Standard binary 

numeration system 
(infinite m) 

•15000 £ 

FIGURE 1. Distributions of lfs in 16-Tuple Zeckendorf Numeration Systems 

TABLE 2 ([3], [11]). Average Proportion of lfs in Numeration Systems with Basis 
Elements Ft = Fi_1 +i^_2 + • • • + ^ - m When the Number of Bits Is Large 

| m 

K7~ 
2 

0.2764 
3 

0.3816 
4 

0.4337 
5 

0.4621 
6 

0.4782 
7 

0.4875 
8 

0.4929 
oo 

0.5000 

Klein [11] considers numeration systems based on the recurrence Ft =Fj_l+Fi_m for 
i>/w + l, and Fj=i-l for 1 < / < / W + 1, where m>2. Consider a representative ^i-tuple T = 
(aw_1?aw_2, ...,a1?a0), where ay e{0,l}. From Theorem 1 in [6] it follows that, if every pair of l's 
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is separated by at least m - 1 0' s, then T is a unique representation of N = ZJTo aiFi+i • F o r m = 2> 
this is the Fibonacci numeration system in which no two l's are adjacent. A regular expression for 
the allowed representatives is 

R = 0*+(0 + 10'f,"1)*10*. (4) 
The 1 in 10* represents the rightmost 1 in a string containing at least one 1. In this case, any 
number of 0's, as described by 0* occurs to its right. (0 + 10w-1)* represents a string consisting 
of a sequence of substrings of the form 0 and 10w-1. It follows from this construction that each 
pair of l's is separated by at least m-1 0's. 

Consider a generating function N(x, y, z) to count the representative w-tuples and the 0's and 
l's in these representatives. From (4), we can write 

N(x, y, z) = (1 + xy + x 2y2 + 0 
+ [(1 + (xy + xmym~lz) + (xy + xmym~lzf + • • •) xz(l + xy + x 2 / + ••')] 

(5) 

Here, (l + xy + x2y2 + •••) counts the ways to choose no 0's, one 0, two 0's, and so forth, while 
(xy + xmym~1z) counts the ways to choose either a single 0 or 10m_1, and xz counts the choice of a 
single I. Equivalent to (5) is the following: 

N(x,y,z) = 1 
xy 

1 + xz 
l-xy-xmym'1z (6) 

From this, we obtain the distribution of 16-tuples according to the number of l's, as shown in 
Figure 2. It is interesting that, even for small m, the number of representative w-tuples is small 
compared to the standard binary numeration system, shown here truncated to 1000 in order to 
display detai l . Standard binary 

numeration system 
truncated to 1000 

Fibonacci 
numeration systei 

FIGURE 2e Distributions of l?s in 16-Tuple Numeration Systems Whose Basis 
Elements Are Generated by the Recurrence Fi - Fi_l •i-Fi_m 

If we substitute 1 for y and z in (6), we achieve a generating function for the number of 
representative w-tuples, as follows: 
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N(x, 1,1) = 
1 - j c 

1 + -
l-x-x" 

l-xm 

(l-x)(l-x-xm) 
(7) 

Specifically, gnnD, the coefficient of xn in the power series representation of (7), is the number of 
representative w-tuples. We can write (7) as 

tf(*,u)=y^:+"-, (8) 

where ... represents terms whose contribution to £,nuu is negligible, for large «, compared to the 
term shown, and 

1 
gm~ (l~am)ia+mam

m-lY 

Here, am is the dominant root, i.e., the singularity on the circle of convergence of N(x, 1,1). We 
are interested in the value of %nuu when n is large; thus, we write 

(l-am)(a + maZ~l) 
1 

m ~)\am 
(9) 

fn where fn ~ gn means lim„ 

Consider now the proportion of bits that are 0- and 1 in the representatives counted by %nuu. 
Substituting 1 for z in (6) yields N(x,y,l), a generating function in which a typical term is 
(^ 0 n + £„iD J 1 + ^n2u y2 + ' " "^H/ ID/ 1 )*"* where %niu is the number of representative w-tuples with 
/ 0fs. Differentiating N(x, y, 1) with respect to y and setting y = 1 yields a generating function in 
x in which a typical term is (gn]D + 2£;n2D + n£;m[)xn = Enxn. Dividing E^ by %nnu yields the aver-
age number of 0fs in representative w-tuples. Dividing this by n gives the average proportion PQ,S 

of bits that are 0. That is, 

^ s W ^ S / ^ ^ j , ! ) 
«>o 

(l-xm)(x + (jn-l)xm) 
,m\2 ,=1 (i-x)(i-x-xmy + • (10) 

where - • • represents terms whose contribution to En is negligible for large «, compared to the 
term shown. But N0<s(x) can be expressed as 

4W _ g ^ ( l - q J ( l + ( ^ - l ) < - 1 ) + • 

a» 

where ... represents negligible terms. Therefore, from (11), we have 

H ^ ^ O - a ^ l + ̂ - lK- 1 ) ! l 

a„ 
n. 

Thus, the proportion of digits that are 0 when the number n of digits is large is 

l + Cm-lK-1 

^0's — " l+ma' m-\ 

(11) 

176 [MAY 



ON THE PROPORTION OF DIGITS IN REDUNDANT NUMERATION SYSTEMS 

Table 3 summarizes these results. It includes PVs, the proportion of bits that are 1, which can be 
obtained from PVs = l-P0,s. It also shows values for the proportion of 0ss and l*s for large n. As 
m grows, the proportion of bits that are i approaches 0, as shown in the last row of the table. All 
entries in this row are approximations that apply when m is large. For example, the dominant root 
am of l~x~xm can be calculated as follows. Let am = e"A. For small A, this can be approxi-
mated be the truncated series 1 - A. Thus, l~am-a2 = ®~ A - e~mA. For t = mA, we find that 
t = me~\ from which we obtain lnm~lnt + t ^i. Thus, l-am-a™^l-am-A^l~am-tIim 
« 1 - am - In m I m or am = 1 - (In m) I m. By a similar calculation, the approximation for the num-
ber of representative w-tuples shown in the last row, second column of Table 3 can be derived. 

TABLE 3. Asymptotic Approximations to the Number of Representative if-Tuples and the 
Proportion of dfs and lfs in Numeration Systems with Basis Elements Fi = Fi_l + Fi_m 

[lllllllltllllil 

General m 
2 

1 3 
| 4 
1 5 
1 6 | 

7 | 
8 | 

- » oo 

l|i;;l!llliiiilpi^ilill!ll;il!:i 
i ( i T 

(\-amX\+maZ-l){am) 
1.1708x1.6180° 
1.3134x1.4656° 
1.4397X1.3803D 

1.5550xL3247n 

1.6621xl.2852n 

1.7630xl,2554n 

1.8587X1.232O0 

m/ln2 m 

i|||l||iw|||ilp||:l 

(l + (/n-l)oO 
_ _ _ _ _ _ 

0.7236 
0.8057 
0.8492 
0.8762 
0.8948 
0.9084 
0.9188 
1- I/m 

i|;Iilil|| |M|i|| 

(l-aj 
am(l + maZl) 

0.2764 
0.1943 
0.1508 
0.1238 
0.1052 
0.0916 
0.0812 
1/m 

a Dominant root 1 
of 1-JC-JT 

0.6180 J 
0.6823 | 
0.7245 | 
0.7549 | 
0.7781 J 
0.7965 j 
0.8117 | 

t-(lnm)/m j 

3, MULTIPLE-VALUED NUMERATION SYSTEMS 

There has been less work on numeration systems with nonbinary digits. Klein [11] considers 
numeration systems based on the recurrence Ft = fnFt_x -Fjm2 for i > 3, F3 = m, and F2 = l, where 
m>3. Consider a representative /i-tuple T= (an_han__2,...,al9a0), where at e{0, 1,...,m-1}. 
From [11], if every pair of m-Vs is separated by at least one /, such that z e{G, 1, ...,/w-3}, then 
J is a unique representative of JV = EfrJ atFi+2. For this numeration system, we seek the pro-
portion of digits that are 0,1,..., m - 2 and m - 1 . We use a generating function N(x, y9 z, w) in 
which x tracks the number of digits, y tracks the number oHm-\\z tracks the number of m - 2' s, 
and w tracks the number of 0fs. By symmetry, the proportion of digits that are /, where z is 
restricted by 1 < z < m- 3, is the same as the proportion of 0's. Indeed, w can be viewed as track-
ing any i in the range 0 < i < m - 3. 

We enumerate a representative according to whether it has 1) no m- Is s or 2) at least one 
# i - l . For 1), there is no restriction on the digits, and the representatives are described by the 
regular expression, P = (0 + l + 2+--- + m-2)* . The power series expression for the number of 
representatives, in this case, is 

1 + (WX + (/W-3)X + ZT) + (WX + ( M - 3 ) X + ZX)2+(WX + (/II-3)X + 2X)3 + ^ ^ (12) 

That is, the term wx represents a choice of a 0 that contributes 1 to the count of 0's, as tracked by 
w, and 1 to the count of digits, as tracked by x. Similarly, the term zx tracks the number of 
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m - T s. The term (m - 3)x tracks the number of digits in {1,2,..., m - 3}. Expression (12) can be 
written as 

i r ~ ^ — • ( 1 3 ) 

l-wx-(m- 3)x - zx 
For 2), the regular expression that describes the allowed representatives is 

[P + (ifi-l)(m-2)*(0 + l + 2+ —+(m-3))]*(m«l)P. 

Here, the rightmost m -1 is the rightmost m -1 in the string. To its right is any substring consist-
ing of the digits 0, 1, ..., and m-2, as described by P and enumerated by (13). The digits to the 
left of the rightmost m-l can be chosen from Q, 1, 2, ..., m-2 (i.e., from P) and from strings 
beginning in m-1, ending in a digit whose value is m-3 or less with no, one, two, etc. wf-2's in 
between. The choices for the digits to the left of the rightmost m-\ are enumerated by 

i2 

1 + wx + (m — 3)x + zx + yx[wx -b(m- 3)x] 
l-zx 

wx + (m- 3)x + zx + yx[wx + (m- 3)x] 
l~zx 

Here, the choices of a substring beginning in m-\ are enumerated by yx[wz + (m-3)x]I (l-zx), 
where yz represents the choice of the first digit m-l, [wz + (m-3)x] represents choice of the last 
digit, 0, 1, ..., m-2, and II (l-zx) represents the choice of the #w-2fs in between. Thus, the 
generating function for the choices of representatives is 

N(x, y9 z, w) - 1 r 
l-wx-(m- 3)x - zx 

1 + - yx 
l-wx-(m- 3)x -zx- yx[wx + (m- 3)x] 

l-zx 

(14) 

Substituting 1 fory, z, and w into (14) yields N(x, 1,1,1), where 

N(x,l,l,l)-- l 
1-MX + X 

is the generating function for the number of representative w-tuples in this numeration system. 
Specifically, £nnDQ, the coefficient of xn in the power series representation of (15), is the number 
of representative w-tuples. We prefer to write (15) as 

N(x) = Sm 

i-
(16) 

where 

am = -m- •4^f- p m -
m + 4nF-4 

a 

Pm 

p Sm 
mj I-at 

-, and/^ = 
l-fi 

That is, from (16), we can write gnDDD= gmQ-/(xm)n +hm(l/'f)m)n'. We are interested in the value 
of %nuuu when n is large, so we use only the left term of the right side of (16). Thus, 

1 
1-ai 

1 
\am 

(17) 

Table 4 shows the values of gm and 1 / am for various m. 
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TABLE 4„ Asymptotic Approximations to the Number of Representative n-Tuples and 
Proportion of Digits in Numeration Systems with Basis Elements Fi = mFi_1~Fl 1 i-2 

[ M 

General m 

1 3 
4 
5 
6 
7 

1 8 
— ^ oo 

Number of 
representative 

i r i Y 
i-<UJ 
1.1708x2.6180s 

1.0774x3.732 l a 

1.0455x4.7913° 
1.0303x5.8284s 

1.0217x6.854 l a 

1.O164X7.873O0 

l.OOOOx/a" 

Proportion of 
digits that are 
i'for0£&ii*3 

am 

i-«i 
0.4472 
0.2887 
0.2182 
0.1768 
0.1491 
0.1291 

1/m 

Proportloa of 
digits that are 

m~2 

m 

0.3820 
0.2679 
0.2087 
0.1716 
0.1459 
0.1270 

Mm 

• Proportion of 
; digits f ia t are 

(1 + aJ 
0.1708 
0.1547 
0.1366 
0.1213 
0.1087 
0.0984 

1/m 

: Um 1 

m—Vm2—4 

0.3820 | 
0.2679 
0.2087 
0.1716 1 
0.1459 
0.1270 

1/m | 

Substituting 1 for y and z in (14) yields N(x, 1,1, w). A typical term in the power series rep-
resentation of this generating function is (^••o + 4mi w l + ^ D n 2 w 2 + "" + ^ D D X K ) where 
«̂na& *S ^ i e number of representative w-tuples with k 0's. Differentiating this with respect to w 

and setting w = 1 yields a generating function in x in which a typical term is (̂ WDDl + 2£IIDn2 + • • • 
+ /i^nDnw)^w = Swx". Dividing Ew by ^WDDD yields the average number of 0fs in representative /?-
tuples. Dividing this by w gives the average proportion of digits that are 0. 

But NQS(X) can be expressed as 

2x2 
w=i (l-mx + x ) 

(18) 

a„ 

N0.s(x)=(1 a2j2-+-V 
(19) 

a my 

where ••• represents terms whose contribution to En is negligible, for large w, compared to the 
contributions from the term shown. Therefore, from (19), we have 

®n 

(I-al
mY {a 

1 
n. 

Thus, the proportion of digits that are 0 when the number of digits is large is PQ,S = am/(l-a2
m). 

By an earlier observation, we can write Pm_Js = • • • = PVs = P0.s. Similarly, for the m - T s, we have 

(l-x2)x 
^.W = I V = 7^U,1 

n>0 dz r-\ (x -mx + l) 
I-a 

X 
- + • 

1-
(20) 
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where . •. represents terms that can be neglected, when n Is large. Therefore, from (20), we have 

<?*L 
l~al 

r 1 
— \n and Pw_2.s - an 

Table 4 above shows the various proportions. It includes an expression for Pm_Vs, which is 
obtained from Pm_Vs = 1 - (m- 2)PQ,S - Pm_2v Note that, as m grows, the proportion of digits that 
are i for 0 < i < m - 1 becomes nearly equal. 
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