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1. INTRODUCTION 

The standard Fibonacci numbers have several well-known and familiar properties, among 
which are the fact that the ratio of successive terms approaches a fixed limit (/>, and that the nth 

Fibonacci number is asymptotic to (/)". In this paper we extend these properties to a generalized 
class of Fibonacci sequences, giving necessary and sufficient conditions for such a sequence to be 
asymptotic to one of the form nv~lXl. In that case, we show how to compute the limiting ratio 
between the solution and nv~lAn, as well as proving that the ratio of successive terms of a solution 
must have X as a limit. 

The necessary and sufficient conditions mentioned above are stated in terms of the roots of a 
polynomial. Indeed, this polynomial is the characteristic polynomial associated with the difference 
equation defining a generalized Fibonacci sequence. We also discuss conditions that depend 
directly on the coefficients of the characteristic polynomial. As a special case, we derive results 
when the polynomial has negative real coefficients (except for the leading coefficient 1). More 
generally, we give a sufficient condition on the coefficients for the roots to satisfy the necessary 
and sufficient conditions discussed above. 

2. PRELIMINARIES 

Let ax,a2,...,ar be arbitrary r > 2 complex numbers with ar & 0, and let A = (a_r+l, a_r+2, 
..., <2_i, a0) be any given sequence of complex numbers. The weighted r-generalizedFibonacci 
sequence {y^(w)}^_r+1 is the sequence generated by the difference equation with initial values: 
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{yA(n) = an, w = - r + l , - r + 2,. . . ,- l ,0; 
r (1) 

M^WA^-i), w = 1,2,3,.... 
1=1 

As a special case, when ai = 1 for all i (the unweighted case), a0 - 1, and at = 0 for i = -r +1, ..., 
- 1 , (1) generates the r-generalizedFibonacci numbers introduced by Miles [8]. Explicit repre-
sentations for these numbers can be found in [3], [5], and [6]. 

The polynomial p(x) = xr-alxr~l ar_lx-ar is called the characteristic polynomial 
associated to (1), and any solution X of the characteristic equation p(x) = 0 is called a charac-
teristic root for (1). 

The first result, whose proof can be found in Kelley and Peterson [7], for example (or also in 
Jeske [4] or Ostrowski [9, §12]), relates the general solution of (1) to its characteristic roots. 

Theorem 1: Suppose (1) has characteristic roots Xu X2, ...,Xk with multiplicities /% m^ ..., mk9 

respectively (mi+m2 + -"+mk=r). Then (1) has r independent solutions nJXn
£ (j = 0, ...,m£_{, 

£ = l,...,k). Moreover, any solution of (1) is of the form 
k mt-\ 

£=l j=0 

where the J3£j are determined by the initial condition A = (a_r+1, a_r+2,..., a_ly aQ). D 

Remark 2: Any independent solution nJln
£ (j = 0, ...,m£_x; £ = \...,k) can be generated from 

the initial conditions ai - V)tt for / = -r +1,..., - 1 and a0 = l. D 

3. THE MAIN RESULTS 

The necessary and sufficient conditions we consider are given in terms of the roots of the 
characteristic polynomial associated to (1). To simplify, we introduce the following terminology. 

The polynomial p(x) is called asymptotically simple if, among its roots of maximal modulus, 
there is a unique root X of maximal multiplicity v. Then X is called the dominant root of p(x) 
and v is called the dominant multiplicity. Also, the system (1) is asymptotically simple with 
dominant root X and dominant multiplicity v if its characteristic polynomial is. 

Theorem 3: System (1) is asymptotically simple with dominant root X and dominant multiplicity 
v if and only if, for any initial condition A, the sequence 

converges to a limit LA, with LA not equal to 0 for at least one A. 

Proof: To prove the //"part, we observe from (2) and Remark 2 that the convergence for all 
A implies the convergence of the sequence 

(3) 
n=\ 
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for any £ = l9...9k and j - 0,..., mt - 1 . But, for each I, the convergence of the sequence (3) for 
j = 0, ...,/w^-l implies that | ^ | < | A | or |A^|=|1| and v > ^ for Xt*X or v>/w^ for X£ = X. 
Moreover, all the limits are zero except for j-mt-\ when X£ = X and v = mt. Also, the con-
vergence to a nonzero limit LA for some y4 implies that at least one sequence (3) has a nonzero 
limit. Hence, X must be the dominant root and v the dominant multiplicity. The only if part 
follows directly from Theorem 1. D 

The next step is to relate yA(n) for arbitrary A to y0(n), the solution of (1) obtained for the 
initial conditions af = 0, for / = - r + ! , . . . , -! , and aQ = l. The matrix approach allows us to 
obtain the desired relation. 

Let J be the (r, r) -matrix defined by 

T = 

a\ 
1 
0 

6 

a2 
0 
*. 
... 

... 

... 
•.' 
0* 

... 

... 

1 

ar 
0 

0 
0 

and YA{n) be the (r, 1)-matrix defined by 

YA(n) = 

yA(n) 
yA{n-\) 

yA(n-r + l)_ 

n = 0,1,2, 

Hence, YA(0) = A [if we consider A as an (r, 1)-matrix]. Therefore, we have YA(n + l) = TYA(n) 
and YA(ri)=rA. 

Let us also define the (r, 1) -matrices Yi (i = 0,1,...) by 

Y = •(/ +1)* entry, i = 0,1, ...,r-\, 

and Yt = 0 for / = r, r +1, . . . . Let Yt(jt) = TY^ for n = 0,1,2,.... Hence ^ (w) = IJ(n +1), and also 

j , ( « - l ) 

where {)>,•(«) K£-r+i is the solution of (1) with the initial condition A = Yt (cc_j = 1 if j = i and 
a_; = 0 if j * j for j = 0,l,...,r-1). 

Since ^ = EJTQ a - / ^ S t follows that 
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r - l 

W = IM(«). (4) 
1=0 

From these definitions and notation, we have the following direct result. 
Lemma 4: Let a, = 0 for /' = r +1, r + 2,..., then we have: 
(a) 7^ = a,.+170 + 4 i ; 

(b) fori>0, 
YM) = i^+Mn-j) + Yi+n, n = 0,1,2,...; 

(c) for any A, 
/ = i 

YA(n) = a0Y0(n) + \ 

(d) for n > 0, we have 

r-l n r-l-n 
E«-/Za/+;Jo(«-i)+ 5>-/J/+„, 0<«<r-l? 

r- l r-i 

Y,a^aiMn^Jl n>r-\ 
/=1 /=1 

r - l r-i 

(5) 

}̂ («) = ôJoW + X^/X^/^o^-i')- (6) 
?=i i=i 

Proof: (a) is a direct consequence of the definitions and notation, (b) is easily obtained by 
induction, (c) follows by substitution of(b) into (4). We obtain (d) by considering the first entry 
in (5). D 

The identity (6) leads to the next result. 
Theorem 5: Let A be any nonzero complex number and v be a positive integer. 

(a) The sequence 

converges for any A (with limit LA) if and only if the sequence 

v-1 *>n nv~lX «=i 

converges (with limit 1 )̂. Moreover, the limits are related by the formula 

/=1 /=/ A 
A.- (7) 

(b) Moreover, in (a), LA * 0 for some A if and only if LQ ^ 0. In that case, 

. d a , . , i .T1 

Proof: (a) From (6), we have 

^nr'S^I^ (8) 
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v-l 

and (7) follows. For (h), (1) must be asymptotically simple with dominant root X and dominant 
multiplicity v. Then, for a0 - 8vl, a_t = (-i)v~lV (j = 1,..., r -1 ) , we have yA{n) = nv~l)C and 
LA - 1 in (a), it follows that 

A> = 
— — wi+y 

and we get (8). • 
Immediate consequences of these results are the next two theorems. 

Theorem 6 (Ratio of weighted r-generalized Fibonacci sequences): Assume (1) asymptotically 
simple with dominant root X and dominant multiplicity v. If A = (a_r+l, a_r+2,..., a_l9 aQ) and 
B = (/?_r+1,P-r+2, .., fi-i, Po) are sequences of r complex numbers such that LB * 0, then 

A + S ^ I ^ 
lim Z A ^ . = ^ L = ™ Z f ^ _ _ . n 

Theorem 7 (Ratio of consecutive terms): Assume (1) asymptotically simple with dominant root 
X and dominant multiplicity v. If A = (a_r+1, cc_r+2,..., a_v a0) is such that LA •*• 0, then 

lim>^±i> = A. D n-̂ +oo yA(n) 

This last result has already been obtained for the unweighted r-generalized Fibonacci numbers 
(see, e.g., [2] and [3]). 

4. THE CASE OF NONNEGATIVE a/s 

In this section we assume the a/s are nonnegative real numbers and ar > 0. The following 
lemma is well known for the unweighted case (see, e.g., [9, §12] or [2, Lemma 2]) and is given 
without proof. 

Lemma 8: There exists a unique real strictly positive characteristic root X for (1). Moreover, X 
is a simple characteristic root and all other characteristic roots of (1) have moduli <X. • 

Theorem 9: Let ah..., ar be nonnegative real numbers with ar > 0, and let X be the unique posi-
tive real number of Lemma 8. Then the following are equivalent: 
(a) (1) is asymptotically simple with dominant root X and dominant multiplicity 1; 
(h) the greatest common divisor GCD{/ \at > 0} = 1. 

Proof: (a)=>(b). Suppose GCD{i \ai>0} = d>l, then p(x) is a polynomial in y - xd, which 
has a unique greatest root Xd > 0 from Lemma 8. Hence, the d^ roots of Xd are all roots of 
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p(x) with the same modulus as $'/, which contradicts (a). For (b)=>(a), see Ostrowski [9, Th. 
12.2]. D 

Example 10: For the unweighted case (at = 1 for all /), Lemma 8 implies (1) is asymptotically 
simple with dominant root X and multiplicity 1, and we get: 

r r-i , r1 

(a) I^ = \ 1 + X - i ^ 
ptX1+J 

r - l r - l r—i r—i I 

1=1 /= / >t 

Dence [1] obtained similar results in terms of all roots of p(x). Here we obtain the result in terms 
of only the largest root X. • 

5. THE GENERAL CASE 

For arbitrary complex number a/s, we do not have a result similar to Theorem 9. In Theorem 
9, the nonnegativity of the a/s is important. The next result and example illustrate this fact. 
Theorem 11: Assume (1) asymptotically simple with dominant root X and dominant multiplicity 
v,thenGCD{/|^-^0} = 1. 

Proof: Similar to (a)=>(b) of Theorem 9. D 
Unfortunately, the condition GCD{i\af ^ 0} = 1 is not a sufficient condition for the general 

case. 

Example 12: Let p(x) = (x-l)(x-i) = x2 -(l + i)x+i, where / = V-T. Then at = 1 + /, a2 =-/', 
and GCD{/|az. ^ 0} = 1. But the characteristic roots 1 and / have the same modulus and multipli-
city, hence (1) is not asymptotically simple. D 

The general problem is to find criteria which are equivalent to or imply that (1) is asymptoti-
cally simple. In the sequel, we consider one such criterion which could certainly be weakened. 

Let X be a priori any characteristic root of p(x), and set 
r - l a, * > = ! # ' = 0.1.2,.... 

Then b0 = 1 and bt = 0 for i > r. Consider a_- = X~l for / = 0,..., r -1. Then, from (6), 

and 
r- l 

«n Z^ J fi-j ' V / xn p J r 
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Let z{n) • We have z(0) = 1, and from (9), 
r - l 

(10) 

It follows that 

7=0 

1, for n = 0, 
[0, for n = 1,2,3,.... 

We can now prove the following convergence result for the sequence {z(ri)}^0. 

Lemma 13: If Zy~{ Ify I < 1, then {z(n)}^0 converges to 0. 

Proof: From (10), it follows that 

\max{\z(n-j)\:j = l,...,r-l}, for n>\. \z(ri)\: 
r - l 

Zl*yl 

From this inequality, the sequence {Mn = max{|z(/)|: j>n}}~^0 is a decreasing sequence, and 
Mn <\Y!J~}i\bj\\Mn_r^l for any n>r-\. Hence {Mn}^0 converges to 0 and the result follows 
since \z{n)\<Mn. D 

From the definition, we have 

x 
r - l 

£z (7) and £ i , = £Ay, for/!£/•-1. 
;'=o y=o y=o 

Let us consider the following product for n > r - 1 : 
r-l ( n V n \ y0(n) iFlH5X» I*, 7=0 

w J r - l 
= Z lM7 ' -* ) + Z ^ Z z(*) = l + §>, ][>(«-*). 

y=0 k=0 y=l A:=«-7+l 7=1 k=0 

( l l ) 

Taking the limit in (11), we get 

limM0 = r - l 

I*, 
7=0 and we have proved the following result. 

Theorem 14: Let X be a characteristic root of /?(x) and set 
r - l a, W 
=t^+y , for / = 0,1,. . . ,r-l . 

j=* 

If r - l 

Zl*yl<1> (12) 

then (1) is asymptotically simple with dominant root X and dominant multiplicity 1. D 
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The next result illustrates that the condition (12) is satisfied in many cases. 

Theorem 15: For any fixed sequence {a,}^ (r >2,ar^ 0) of complex numbers, there exists a 
positive real number R such that, for any ax with |a j>l?, the sequence of a/s satisfies the con-
dition of Theorem 14 for a root X of the characteristic polynomial p(x). 

Proof: Using Lemma 8, let Rx be the unique positive root of the equation 

xr = \a2 \xr~~2 + 2 |a3|xr"3 + • • • + (r -1) \ar |. 

Let us note that we have 

|a2| + 2|a3|i?~1 + 3|a4]i?1"2 + -«+(r-l)|aJi?f+2=i?1
2„ 

Set R = rRv Suppose l a ^ i ? and let X be any root of maximum modulus of p(x). Since the 
sum of all the roots of p(x) (with multiplicity) is equal to al9 we see that X must have a modulus 
greater than or equal to \ax \lr. Thus, we have \X \ > R1. Then 

i=l j=2 

<w2£u-i)\*jwrj+2 
J=2 

= \X\~2R2<1 

Thus, the condition of Theorem 14 is satisfied. D 
Remark 16: The last result is intuitively clear. It Indicates that, If we Increase \ax\, eventually 
there will be only one root of maximum modulus. But Increasing \ax\ means that p(x) behaves 
like q(x) = xr -a/r~l = xr~1(x~a1). Moreover, Increasing \ax\ Implies the modulus of the largest 
characteristic root increases also, and since the expression Zy=i|Ay| does not contain ax, it will 
eventually be less than 1 because each term contains negative powers of | X j. • 

Example 17: As an explicit example, consider the case r = 3, ax = a, a2 = i, and a3 - -ai, where 
/ - ^ 4 and a Is a complex number with |a|> 1. In this case, \a\> 1 is one of the characteristic 
roots of the polynomial p(x) = (x-a)(x2-i), and we can check that Ey~i|£-|= l/|a|2, which 
implies that the condition in Theorem 14 is satisfied. Hence, hmn_>+00[y0(n)]/ an exists and Is 
equal to a2(a2 +/)/(a4 +1). Note that when \a\< 1 the condition in Theorem 14 Is not satisfied 
and the limit does not exist. D 

Remark 18: For the nonnegative a/s, condition (12) is useless because it Implies al>0. Indeed, 
we have, for X as given by Lemma 8, 

Yh '=v1 fo-+i = y1 fr'^Kn 11 ai 

and If ax = 0 then Zr~=\ *y > 1. • 
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