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1. PRELIMINARIES 

Consider two sequences of polynomials {J„(x)}, the Jacohsthal polynomials, and {j„(x)}, 
the Jacob sthal-Lucas polynomials, defined recursively [3] by 

Jrj+2(x) = Jn+l(x) + 2xJn(xl J0(x) = 09 Ji(x) = l, (1.1) 
and 

Jn+l(X) = A+lW + 2 % ( 4 J0(X) = 2, MX) = 1, (1.2) 
respectively. 

Observe that Jn(l/2) = Fn and jn(l/2) = Ln, the n^ Fibonacci and Lucas numbers, respec-
tively. When x = l, we obtain the Jacobsthal and Jacobsthal-Lucas numbers [8], respectively. 
(Other number sequences derived from (1.1) and (1.2) which are of some interest are generated 
byx = l/4.) 

For {Jn(x}} and {j„(x)}? the characteristic equation is 

A2-A-2x = 0 (1.3) 
with roots 

so that 

, , 1 W8x + 1 
a(x) = — 

1 J 2 
m . 1-V8x + 1 

a(x) + ft(x)= 1, 
a(x)/3(x) = -2x, 
a(x) - /?(x) = V8x + 1 = A(x) ,J 

(1.4) 

(1.5) 

whence 

Moreover, 

A(l) = 3. (1.5a) 

a2 (x) + 2x = A(jc)a(x), 1 
y92(x) + 2x = -A(x)/?(jc).J 

(1.6) 

Comparison might be made between our definition (1.1) and that in [2] for Jacobsthal poly-
nomials. The correspondence is simple: x in [2] <r^ 2x in (1.1). While the nomenclature in [2] 
serves a very valuable purpose leading to elegant results and extensions, we prefer to retain the 
factor 2x for consistency with our notation for Pell polynomials [10]. 

To the best of my knowledge, properties of the Jacobsthal-Lucas polynomials defined fully in 
(1.2), and the corresponding numbers [8] generated when x = 1, are generally due to the present 
author, as an appropriate companion to those of the Jacobsthal polynomials (1.1). (Our (3.10), 
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(3.11)? and (3.12) do occur in [12], though in a heavily camouflaged form.) When it is convenient 
(e.g., for brevity), the polynomials given by (1.1) and (1.2) will simply be referred to collectively 
as Jacohsthal-type polynomials, or, as in the title of the paper, more simply still as Jacobsthal 
polynomials. 

Aspects of Jacobsthal polynomials (1.1), which are documented in other sources (e.g., [1], 
[2], [12]) will not in general be duplicated in this presentation, though the basic features must 
recur. 

Goals of This Paper 

Aims of this presentation are: 
(i) to exhibit some basic properties of the polynomials (Tables 1 and 2) which generalize the 

properties of the corresponding numbers in [8]; 
(ii) to reveal some of the salient features of the diagonal functions generated by (1.1) and (1.2); 
(iii) to examine the properties of the "augmented" polynomials developed from (1.1) and (1.2) by 

the addition of an appropriate constant. 

2. THE JACOBSTHAL-TYPE POLYNOMIALS 

Tables 1 and 2 list the first few polynomials of (1.1) and (1.2) of these Jacobsthal-type 
sequences. 

TABLE 1. Jacobsthal Polynomials {Jn(x)}:0< n<10 

J0(x) = 0 J6(x) = 1 + 8x + 12x2 

Jx(x) = 1 J7(x) = 1 +1 Ox + 24x2 + 8x3 

J2(x) = 1 Js(x) = l + 12x + 40x2 + 32x3 

J3(x) = l + 2x J9(x) = l + 14x + 60x2 + 80x3 + 16x4 

J4(x) = 1 + 4x J10(x) = 1 +16x + 84x2 +160x3 + 80x4 

y5(x) = l + 6x + 4x2 

TABLE 2. Jacobsthal-Lucas Polynomials {jn(x)}:0 < n < 10 

j0(x) = 2 y6(x) = l + 12x + 36x2 + 16x3 

7x(x) = 1 77(x) = 1 + 14x + 56x2 + 56x3 

j2(x) = 1 + 4x 78(x) = 1 + 16x + 80x2 + 128x3 + 32x4 

j3(x) = l + 6x j9(x) = l + 18x + 108x2 +240x3 + 144x4 

j4(x) = 1 + 8x + 8x2 jl0(x) = 1 + 20x 4- 140x2 + 400x3 + 400x4 + 64x5 

j5(x) = l + 10x + 20x2 

Equivalent expressions for {Jn(x)} in Table 1 are given in [2] with x <-» 2x, as mentioned in 
Section 1. 
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3e BASIC PROPERTIES OF THE JACOBSTHAL-TYPE POLYNOMIALS 

Generating Functions 

l J r , (x )y - , = (l-j>-2xy2)-1, (3.1) 
1=1 

Z^iWy-1 = (l + 4xy)(l-y-2xy2y1. (3.2) 
/=! 

Binet Forms 

J " ( X ) - A(xj ' ( J ' 3 ) 

j„(x) = a"(x)+/?"(x). (3.4) 

Simson Formulas 

^ i W n - i O O - ^ (*) = (-l)"(2x)"-1, (3.5) 

J„+i(*U-i (*) - jfa) = -A2(x)(-l)"(2x)"-1 I 
= -A2(x)(J„+1(x)J„.1(x)-^(x))j' 

Summation Formulas 

Explicit Closed Forms 

(3.6) 

£j;(x) = 4a&zi (3.7) 

£jl(x) = JH+iX)~1- (3-8) 

4(*)=i("~*~,'W, (3.9) 

Important Interrelationships 

Jn(.X)J„(x) = J2„(X) 
Jn(x) = J„+i(x) + 2xJ„_l(x) 

A2(x)J„(x) = jn+l(x) + 2x/„_,(x) 

Jn(x) + j„(x) = 2J„+l(x) 

A2(x)J„(x)+j„(x) = 2jn+1(x) 

A(x)J„(x)+jn(x) = 2a"(x) 
A(x)Jn(x)-jn(x) = -2/]"(x) 
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Jm(x)j„(x) + J„(x)Ux) = 2Jm,„(x) [by (3.3), (3.4)], (3.18) 

Ux)Ux) + ̂ \x)Jm(x)J„(x) = ym+^) [by (3.3), (3.4)], (3.19) 
whence (m = n) 

fn{x) + A2(x)J2
n(x) = 2j2n(x), (3.20) 

the left-hand side being a sum of squares. Putting m = n in (3.18) reduces the formula to (3.11). 
Readers are invited to discover formulas corresponding to (3.18) and (3.19) when the + sign on 
the left-hand side is replaced by a - sign (leading in the second instance to a difference of 
squares). 

A neat differentiation worth recording is 

^M = 2nJn_l(x), (3.21) 

which differs appreciably from analogous derivatives for other "Lucas-type" polynomials, namely, 
those for which the initial term (i.e., when n = 0) has the value 2 (see [7]). Less exciting is the 
companion result 

A 2 ( x ) ^ ^ = 2«/„_1(x)-4J)7(x). (3.22) 

Column Generators of{Jn(x)} and {jn(x)} 

Formulas (3.1) and (3.2) disclose the methods for producing the polynomials {Jn(x}} and 
{j„(x)}, i.e., the rows in Tables 1 and 2. Columns in Table 1 are readily seen to be generated by 
(2xy2)\\-yy\ (2xy2)(l-yT2, {2xy2)\\-y)-\ (2xy2)\l-yT\ (2xy2)\l-yT5, ..., i.e., the 
r^ column is born from 

(2xy2y-\\-yr (r>l). (3.23) 

The column generator for the r* column in Table 2 is conceived to be 

(2xyi) 2\r-l 1 1 
-+-(l-yf-1 (\-y)r 

2-y 
v-y)r 

(r>\) 

= (2xy2)r-1-^-. (3.24) 

Associated Sequences 

Suppose we define the k^ associated sequences {J^k\x)} and {j^k\x)} of {Jn(x)} and 
{jn(x)} to be, respectively (k > 1), 

4 " ) W = ^ T 1 ) W + 2 x / ^ ( x ) (3.25) 
and 

M\x)-j(^\x) + 2xj^\x), (3.26) 

where J^{x) = J„(x) and^0)(x) = j„(x). Accordingly, 

J<P(x) = Mx) D>y (3.12)] (3.27) 
and 
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(3.29) 

j«\x) = A\x)J„(x) [by (3.13)] (3.28) 

are the generic members of the first associated sequences {Jf\x)} and {jjp(x)}. 
Repeated manipulation of the above formulas eventually reveals that 

U2m\x) = j^-l\x) = A""(x)Jn(x), 

U2m+l)(x) = £'»\x) = A2'»(x)UX). 
Thus, for m = 1, n = 5, 

J jQ\x) = jf\x) = (8x + l)J5(x) = 1 + 14x + 52x2 + 32x3, 
\jP(x) = J5

(2)(x) = (8x + l)j5(x) = 1 + 18x + 100x2 + 160x3„ 

Another approach [7] may be employed to discover the formulas (3.29). 

4 DIAGONAL FUNCTIONS 

Inherent in the structure of {J„(x)} and {j„(x)} are the rising and descending diagonals which 
are fashioned in a manner analogous to those for Chebyshev and Fermat polynomials [4], [5]. 

Rising Diagonals 

Imagine parallel upward-slanting lines in Tables 1 and 2 in which there exist the rising diag-
onal/unctions {^(x)} and {^(x)}, respectively. Some of these are, say, 

i?o(x) = 0, R^x) = R2(x) = R3(x) = 1, R4(x) = 1 + 2x,..., R10(x) = 1 + 14x + 40x2 + 8x3 (4.1) 

and 

rQ(x) = 2, rl(x) = r2(x) = \ r3(x) = l + 4x,...,r10(x) = l + 18x + 80x2 + 56x3„ (4.2) 

Generating functions unfold by the usual technique. We have 

Y,Ri(x)ti-l = (l-t-2xt3yl (4.3) 

and 

f / , ( * y = (2 - 0(1 - 1 - 2xt3y\ (4.4) 
/=o 

Alternatively, see (4.10), 

^(xy-1 = (l + 4xt2)(l-t-2xt3yl. (4.4)' 

Comparing (4.3) with (4.4), and taking into account the different initial values of / therein, we 
arrive at 

rn(x) = Wr,+l(x)-Rri(x), (4.5) 
i.e., 

r„(x) + Rn(x) = 2Rrt+l(x), (4.5)' 

which bears a formal correspondence with (3.14). 

1997] 141 



JACOBSTHAL REPRESENTATION POLYNOMIALS 

Inherent in (4.3) and (4.4) are the recurrence relations (n > 3) 

Rn(x) = R^1(x) + 2xRn_3(x) (4.6) 

(4.7) 
and 

Explicit closed forms are 

^(x) = rw_1(x)+2xr„_3(x). 

(4.8) 

and 

r.(x) = H-2^W-1_-1
2r)(2xy. (4.9) 

Recall from (1.5) that 2x = -a(x)/?(x), so that (4.8) and (4.9) allow us to express RJ^x) and 
rn(x) in terms of a(x) and /?(x). 

Combinatorial calculations (including Pascal's formula) may be employed to establish (4.8) 
and (4.9) from the recurrence formulas. Proofs by inductive methods may also be applied, but 
these are somewhat tortuous and are omitted as a leisure activity for the dedicated reader who can 
convert a tedious activity into a pleasurable challenge. 

From (4.5) and (4.6), it follows immediately (n -> w +1) that 
r„(x) = Rrl(x) + 4xRn_2(x) (»>2). (4.10) 

This result also follows directly from (4.4)'. Combining (4.5)' and (4.10), we deduce that 

r„2(x) - %(x) = 8x^+1(x)^_2(x). (4.11) 

Oddly, there is no result like (4.10) in which Rn(x) (possibly with a factor) and rn(x) are 
interchanged, as in (4.6) and (4.7), for descending diagonals. (Why is this so?) A similar situa-
tion exists for Pell-type polynomials (cf. [13]). 

Differential equations (partial) of the first order are readily determined from (4.3) and (4.4) 
on writing 

R^Rix^^R.ixy-1 (4.12) 

and 

' s K * , 0 = f > , ( * y . (4.13) 

These are 
,3<3R , , . ^ < 2 R 2*^-0 + 6*0^ = 0 (4.14) 

at ox 
and 

,31 dr , D ,, , , A . 0 r 
2 ^ - + * -(1 + 6 * ^ = 0. (4.15) 

Theoretically, there exists a pair of ordinary differential equations derivable from i^(x) and rn{x) 
(see [4], [5]), but so far their nature has not been vouchsafed to the writer. 
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Coming now to descending diagonal polynomials, we encounter a surprisingly felicitous ease 
with the mathematics (as also occurs, e.g., in [4], [5]). 

Descending Diagonals 

Formed in a similar way to the rising diagonal polynomials, except that we now imagine sys-
tems of parallel downward-slanting lines (cf. [4] for Chebyshev and Fermat polynomials), we 
behold the descending diagonal functions {Dt{x)} and {dt(x)}, respectively. 

Some of these are, say, 
DJx) = 0, DJx) = 1, DJx) = l + 2x,..., 

(4.16) 
D5(x) = l + 8x + 24x2+32x3 + 16x4 

and 

and 

rf0(x) = 2, dl(x) = l + 4x, rf2(x) = l + 6x + 8x2,..., 
(4.17) 

rf5(x) = l + 12x + 56x2 + 128x3 + 144x4 + 64x5. 

Patterns of behavior are readily discernible from the formation of the generating functions 
£ z ) „ ( x r - 1 = [ l - ( l + 2x)/r1, (4.18) 

£ dn{x)f'x = (1 + 4x)[l - (1 + 2x)tYl, (4.19) 
H=l 

whence («>1) 

and 

leading to 

Dn(x) = (l + 2x)"-1 (4.20) 

c/w(x) = (l + 4x)(l + 2x)"-!, (4.21) 

d„(x) = (\ + 4x)Dn(x), {A.22) 

Dn{x) = _ ^ L = 1 + 2 x («>2), (4.23) 
D„_x(x) £/„_i(x) 

i.e., rf„(x)£>„_i(*) = d^ix^ix), 

4&\ = l + 4x (n>\), (4.24) 
D„(x) 

d„(x) = Dn+l(x) + 2xD„(x), (4.25) 

(l + 4x)2Z)„(x) = ̂ +1(x) + 2x^(x), (4.26) 

J5(x)D^(x) = D„+l(x) + 2xD„_l(x), (4.27) 

and 
J5(x)d„_1(x) = dn+l{x) + 2xd„_1(x). (4.28) 
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See Table 1 for J5(x). En passant, notice that l + 2xand l + 4x, occurring In (4.18)-(4.24) 
and (4.26), may be expressed variously in terms of polynomials in Table 1, Table 2, (4.1), (4.2), 
(4.16), and (4.17). 

Observe that the summed forms in (4.27)-(4.28) preclude the possibility of any associated 
sequence properties of {Dn(x)} and {dn{x)} analogous to those for {Jn(x)} and {j„(x)}. (Put 
k = 1 in (3.25) and (3.26) for the comparison and contrast.) 

Quartet: Differential Equations 
Write 

D s; D(x, i) = £ Dn{x)tn~l = [!-(! + 2x)tyl (4.29) 

and 

d s d(x, t) = Y.dn{x)f-1 = (1 + 4x)[l - (1 + 2x)t]~l (4.30) 

using (4.5) and (4.6). 
Without difficulty one derives, from (4.20), (4.21), (4.29), and (4.30), 

2 / ^ - ( l + 2 * ) ^ = 0, (4.31) 
at ox 

2^-(1 + 2 X ) | £ - 4 D | = 0 , (4.32) 

(l + 2x)^-(x) = 2(n-l)D„(x) (4.33) 

MM = 2{2Dn(x) + (n-l)dn_l(x)}- (4.34) 

More generally, 

,k dkD = k dkD = k\{{\ + 2x)2t}k 

dxk ' dtk [ l - ( l + 2x)/f (i+2^^=(2ot^=ri ::r/+1 (435) 
and 

Roots 

V^r=(w-1)!2"-1 . (4.36) 

Clearly, from (4.20) and (4.21), the polynomial equations Dw(x) = 0 (of degree ? i - l ) and 
<iw(x) = 0 (of degree n) have multiple roots, namely, an (/? — 1) -fold root -1 /2 in the first case and 
an (n -1) -fold root -1 /2 together with a root x = -1 / 4 in the second case. 

Diagonal Numbers 

Substitute x = l in (4.1), (4.2), (4.16), and (4.17). Then the skeletal profiles of the bodies 
fleshed out by the polynomials reduce to 
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w = 0 1 2 3 4 5 6 7 8 9 10 11 
{JU = 0 1 1 1 3 5 7 13 23 37 63 109 
{rj = 2 1 1 5 7 9 19 33 51 89 155 267 (4.37) 

{DJ = 0 1 3 9 27 81 243 729 2187 - ••• ••• 
{</„} = 2 5 15 45 135 405 1215 3645 ... 

So, e.g., by (4.6), (4.7), (4.10), (4.22), and (4.23), 
Rn = Rn_l+2Rn_3:> j 

'. = 4,+4iU, ( 4 3 8 ) 

Jw = 5DW = ISD^j since Dw = 3D„_1.J 

Diagonal numbers for (say) Fibonacci, Pell, Fermat, and Chebyshev polynomials inter alia 
could be tabulated, along with the numbers for their cognate "Lucas" polynomials. See, e.g., [4], 
[5], [11], [13], and [14]. 

Reverting to (4.1), (4.2), (4.16), and (4.17), we may find mild interest in substituting x = 111 
and JC = 1/4. 

Bizarre Afterthought 

What of any interest might eventuate if we imagined rising rising diagonals, descending 
descending diagonals, rising descending diagonals, and other combinations of the two elementary 
dichotomous concepts of rising and (falling) descending? 

Conjectures 
i^+w(x) = i^+1(x)iUx) + 2xRm(x)R„_2(x) + 2xi^_1(x)i^_1(x) (4.39) 

and 

r^„(x) - i W * K ( * ) + 2 ^ ( * ^ (4-40) 

5. AUGMENTED JACOBSTHAL-TYPE REPRESENTATION POLYNOMIALS 

New symbolism and terminology are now required. 
Following the situation for the number sequences {2TW} and {j} described in (3.4) and (3.5) 

of [8], we introduce the augmented Jacobsthal representation polynomial sequence {Jn(x)} 
defined by 

^+ 2(x) = 2Tw+1(x)+2x^(x)-f3, f0(x) = 0, 9i(x) = l, (5.1) 

and the augmented Jacohsthal-Lucas representation polynomial sequence (j„(x)} defined by 

L2(x) = Li(x) + l*tix) + 5> io(*) = 0> 7i(*) = l- (5-2) 
Some of these are, for example, 

Sr0(x) - 0 , ^ (x ) = 1, 2T2(x) - 4 , 2T3(x) =7 + 2x,...? 3"8(x) = 22 + 102x + 160x2+56x3 (5.3) 

and 

j0(x) = 0, jj(x) = 1, j2(x) = 6, j3(x) = ll-h2x,..., j8(x) = 36+162x + 240x2 +72x3. (5.4) 
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The choice and the raison d'etre of the constants +3 and +5 in (5.1) and (5.2) are explained 
in [8]. Properties of these new polynomial sequences {9~w(*)} and {jn(x)} are worthy of con-
sideration per se. 

Replacing +3 and +5 more generally by +c has been done in a separate paper which thus 
covers the four special polynomial sequences {•/„(*)}, {j„(x)}9 {^f„(x)}9 and {jw(x)}. 

6. BASIC PROPERTIES OF {^(JC)} and {}n(x)} 

Generating Functions 
Standard techniques lead readily to 

y °rt(x))/-1 = \±2y? (6.!) 
ft A )y l-2j-(2x-l)/+2xy3? l ; 

y my-1 = 1±^—j. (6.2) 
"i U l -2j/-(2x-l)j /2+2xy3 V ; 

Binet Forms 
Examination of Table 1 and (5.3) leads to the somewhat surprising observation that 

2T„(x) =in±2^h2dn±Mzl^ (6i3) 

Proof of (6.3): Checking quickly validates the cases w = 0,1,2, 3,4 (say). Assume (6.3) is 
true for n - k (fixed integer), i.e., suppose 

Of /x\ _ Jje+2 (X) + ^fc+lW ~ 3 .., tjj\ 

Then 
^ + i W = %(x) + 2x9]w(x) + 3 by (5.1) 

= Jk+2(x) + 2Jk+l(x)-3 + 2x[Jk+l(x) + 2Jk(x)-3] { ^ 
2x 

= Jk+2(x) + 2xJk+l(x) + 2{Jk+l(x) + 2x7, (x)} ~ 3 
2x 

2x 

where the hypothesis (H) has been applied. 
Hence, (6.3) is true for n = k +1, and so, for all «. 
Consequently, (6.3) is true, by induction. 

Induction is used in a similar fashion to establish 

]n(x)=Jn+2(^4J„+l(X)-5 ( 6 4 ) 

For example, 
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n = 7=>RES = ( 1 + 1 4 x " f 6 Q x 2 + 8 Q x 3 + 1 6 x 4) + 4 ( 1 + 12^ + 4Qx24-32x3)-5 
2x 

= 31-f l lQx+l04x2+8x3 

- j7(x) from Table 1 and (5.4). 

Binet forms for 2T„(x) and jn(x) are obtainable by substituting for Jn(x) from (3.3) in (6.3) 
and (6.4). 

Simson Formulas 

\+l{x) 2rn_,(x) -2T„2(x) = (-2x)"-2(2x-6)-3(Jn_l(x) + 2Jn_2(x)), (6.5) 

LiWLiW - %(*) = (-2xr\2x - 20) - 5( J„_x{x) + 4Jn_2(x)). (6.6) 

Summation Formulas 

i^x)=^(Xl~3n-\ (6.7) 
(=i 

._Jn+2(X)-5r>-6 
Z i W ^ " + 2 T (6.8) 

Explicit Closed Forms 

STn(x) =Jn(x)^i{n
r
l
+l

r)(2xY, (6.9) 

j^W^ + sJM/W. (6.10) 

Spotting the second portion of the expressions in (6.9) was not easy. Induction provides us 
with a proof. 

Proof of (6.9): Verification of (6.9) for n = 1,2,3 is straightforward. Assume (6.9) is true 
for n - 1,2, 3,..., k - 1 , k. Then, by (1.1) and the hypothesis, 

^ ( x ) + 2 x ^ _ 1 ( 2 ) + 3 = J,+1(x) + 3 1 + X ^ ; ) i r ) ( 2 x r + l J ^ ; 2 - r j ( 2 x r 

& ' * - r 
r=0v / 

= 2Ti+1(x) by (6.9). 

Being valid for n = * +1, the theorem is true for all n. 
Pascal's formula for binomial coefficients has been applied in the proof of (6.9) when combin-

ing corresponding powers (2x)r, r = 1,2, 3,... . Also, we have absorbed 1 = (̂ Q1) into the constant 
(k\l) to produce (*), by Pascal's formula. 

1997] 147 



JACOBSTHAL REPRESENTATION POLYNOMIALS 

Arguments of a similar nature are applicable for (6.10). 
Observe the simple, but important, connection between (6.3) and (6.4): 

Ux)-Ux) = J"+^~~l- (6.H) 

This seems to be an appropriate place at which to conclude our theory, though more could be 
told. 

7. CONCLUDING REMARKS 

Possibilities for other avenues of development that present themselves include, for example: 
(i) the extension of the theory in this paper to negative subscripts [9]; 

(ii) convolutions for Jacobsthal-type polynomials (cf. [13]); 
(iii) further work on diagonal functions, e.g., as in [14]; 
(iv) research into Jacobsthal-type polynomials along the lines of that for Pell-type polynomials in 

[13] and in a series of papers by Mahon and Horadam, e.g., [10]. 

Initial exploration of some of these opportunities has commenced. 
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