$$\sum_{a+b+c+d=n} U_a U_b U_c U_d = \frac{U_1^3}{6(b^2 + 4a)^3} [((b^5 + 7b^3a + 12ba^2)n^3 - (6b^5 + 30b^3a + 24ba^2)n^2 + (11b^5 + 17b^3a - 48ba^2)n - (6b^5 - 30b^3a - 36ba^2))U_{n-2} + ((b^4a + 6b^2a^2 + 8a^3)n^3 - (6b^4a + 24b^2a^2)n^2 + (11b^4a + 6b^2a^2 - 32a^3)n - (6b^4a - 36a^2b^2))U_{n-3}].$$
(11)

Proposition 2 now follows from (7), (10), and (11).

ACKNOWLEDGMENT

The author expresses his gratitude to the anonymous referee for very helpful and detailed comments that improved the presentation of this paper.

REFERENCES

- 1. R. I. Duncan. "Application of Uniform Distribution to the Fibonacci Numbers." *The Fibonacci Quarterly* **5.2** (1967):137-40.
- 2. G. H. Hardy & E. M. Wright. An Introduction to the Theory of Numbers. 4th ed. London: Oxford University Press, 1962.
- 3. L. Kuipers. "Remark on a Paper by R. L. Duncan Concerning the Uniform Distribution Mod 1 of the Sequence of the Logarithms of the Fibonacci Numbers." *The Fibonacci Quarterly* **7.5** (1969):465-66.
- 4. N. Robbins. "Fibonacci Numbers of the Forms $px^2 \pm 1$ $px^3 \pm 1$, Where p is Prime." In Applications of Fibonacci Numbers 1:77-88. Dordrecht: Kluwer, 1986.

AMS Classification Numbers: 11B37, 11B39

** ** **

LETTER TO THE EDITOR

Dear Professor Bergum:

The Fibonacci Quarterly readers will be interested in yet another natural occurrence of the Golden Ratio. This occurrence is described in the current issue of *The College Mathematics Journal* (Vol. 28, No. 3, May 1997). On page 205, Peter Schumer (schumer@middlebury.edu) of Middlebury College in Middlebury VT provides an interesting variant on the classical problem of showing that the rectangle with fixed perimeter and maximum area is a square.

Schumer notes that texts often present this problem as the dilemma of a farmer who has a fixed length of fencing and wants to build the most efficient animal pen for grazing. It is a simple calculus problem. The problem is complicated somewhat when the farmer has a fixed length of fencing and is using one side of a barn for all or part of one side of the animal pen. Schumer provides a neat analysis of the optimum pen shape when the length of fencing is some multiple of the length of the barn side used.

When the length of fencing available is $\sqrt{5}$ times the length of the side of barn used, the optimum pen shape is a golden rectangle. This is a neat result, simply derived, of interest to FQ readers, and which I have not seen before.

Best regards,

Harvey J. Hindin

Vice-President, Emerging Technologies Group, Inc.