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1. INTRODUCTION 

The coefficients of the Pascal triangle were generalized in 1756 by de Moivre [5]. Each row 
of a Pascal triangle contains a sequence of numbers that are the coefficients of the power series 
expansion for the binary expression (l + x)7^. The de Moivre formula [2], [4], [5], [6] derives the 
coefficients of the power series for the generalized expansion of (1 + x + x2 + • • • + x^J"l^)N. Thus, 
for integers (J>2 andN> 1) and for 0<h<N(J-l), we define C(N,J;h) to be the coeffi-
cients of (xh) in the expansion of 

(l + x + x2 + '-' + xiJ-iy = ZC(N,J;h)xh. (1) 

A Pascal-de Moivre triangle can be created from the coefficients C(N, J; h) for each posi-
tive integer value (J). For example, with (J = 3), the Pascal-de Moivre triangle of C(N, J; h) 
terms for row numbers 1 < N < 4 is: 

N\h 0 1 2 3 4 5 6 7 8 
1 1 1 1 
2 1 2 3 2 1 (2) 
3 1 3 6 7 6 3 1 
4 1 4 10 16 19 16 10 4 .1 

In this paper, the sequence of C(N, J; h) terms in each row (N) of the Pascal-de Moivre 
triangle is examined for the series properties, at various arrangements of terms. Each C(N, J; h) 
term in the Nth row of the Pascal-de Moivre triangle is assigned a coefficient factor (Fh), such 
that 

Series with coefficients (F) = Z{(F^) C(N, J; h)}. (3) 

Sections 3 and 4 define summations of all C(N, J; h) terms in the N^ row of the Pascal-
de Moivre triangle that are separated by some fixed interval spacing (Ah). Then, from the set of 
coefficients (F), the factors (Fh) equal one at each interval step and equal zero otherwise. Sec-
tion 3 examines these summations of the C(N, J; h) terms at intervals that are a function of 
the distribution variable (J); i.e., for (Ah = f(J)). The quadruplet cycle of Section 4 adds the 
C(N, J; h) terms with interval spacing (Ah = 4). 

In Sections 5 and 6, the coefficient factors (Fh) are related to the moments of the C(N, J;h) 
distribution. A quick review of the theory of moments from [3] will illustrate which coefficient 
factors (Fh) from set (F) are involved, and what form the series in (3) will take. 

* This paper, presented at the Seventh International Research Conference held in Graz, Austria, in July 1996, was 
scheduled to appear in the Conference Proceedings. However, due to limitations placed by the publisher on the 
number of pages allowed for the Proceedings, we are publishing the article in this issue of The Fibonacci Quarterly 
to assure its presentation to the widest possible number of readers in the mathematics community. 
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The moment (p\RtX^) about a point (x) for a discrete distribution of (Ch) terms can be 
expressed by a summation over all term indices (h). The R^ moment of (p\R^) is defined by the 
summation in (4) for the distribution density f(h) evaluated at each index (/*): 

rr\R,x) = n{h-x)R f(h)}, (4) 
where /(A) = ( Q ) / ( Z Q ) . 

We choose the distribution terms (Ch) to be the terms in the N^ row of the Pascal-
de Moivre triangle, given by C(N, J; h). By rearranging equation (4), we define a moment sum-
mation equation (5) for the C(N, J; h) distribution as: 

S{(A - x? C(N, J;h)} = (m{Kx))(Z{C(N, J; h)}). (5) 

The left-hand side of equation (5) is the same as equation (3) with the coefficient factors 
(Fh) = (h - x)R. Section 5 uses equation (5) to obtain Summations Based on Moments. Section 6 
uses a similar equation for (3), but with (Fh) = (-l)h(h-x)R, to obtain Summations Based on 
Alternating Signed Terms. In Sections 5 and 6, the C(N, J; h) moment summations and moments 
(n\Rtx)) are evaluated relative to points at (x = 0, the origin) and (x = M, the mean). 

2. DERIVATION AND TERMINOLOGY 

De Moivre derived the formula for each C(N, J; h) term by writing the left-hand side of 
equation (1) in the form (1 - xJ)N(l - x)~N, expanded both factors with the binomial theorem, and 
collected terms. The resulting formula (6) is a summation over all integers {0<a<[h/J]}, 
where [h I J] is the "least integer function" for the largest integer not exceeding the value ofh/J: 

1 N-l [a 
h-aJ+N-l\(N T\ 

(6) 

In a reduced format of factorials, with the substitution (N) = (N\)/((N~-1)\), the de Moivre 
formula becomes the summation in (7) over all integers {0 < a < [h I J]}: 

C(N j - h)=u-ir ( / ? " a J + # ~ 1 ) ! ^ (?) 
W,J,n) U i; (h-aJ)\ {N-a)\{a)V K) 

A standard terminology will be used for the coefficient terms of the Pascal-de Moivre 
triangles. A consistent notation for the C(N, J; h) and C(N, J; h, a) terms is described here: 

C capital letter for the term itself (the coefficient of the basic expansion); 
N, J capital letters for the independent variables of the C(N, J; h) series; 
h, a small letters for the summation indices in their respective sums. 

The power ofIhe Mathematica [8] program allowed computations that could accurately gen-
erate numbers in excess of 100 digits. Therefore, large C(N, J; h) distributions were evaluated 
with precision, including those defined by (N, J) values of (100,2) and (20,20) and (2,300). 

X COLUMNAL SUMMATIONS 

The full N^ row sequence of terms C(N9 J; h) in the Pascal-de Moivre triangle has a known 
series value of(JN) per [4], [7], when summed over all integers 0<h< N(J-1): 
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ZC(N,J;h) = (JN). (8) 

The C(N,J;h) sequence can also be partitioned by taking every (2th) term to obtain an 
ordered summation S(N, J; Q, r) of the C(N, J; h) terms. Reference to such partitioning is 
given for the binomial (J = 2) case in [9] and for the C(N, J; h) sequence in [1]. Here and in the 
next section, the derivation of S(N, J; Q, r) will use a variation of the methods described in those 
references. The main difference between Hoggatt's approach in [1] and the one employed in this 
section is that here the least integer function for \JN IQ] is used rather than the simple ratio of 
(JNIQ). 

For pictorial convenience, the partition of a C(N, J; h) sequence can be displayed in tabular 
form with (Q) columns. As a guide to the tabular display of partitions, the C(N, J; h) sequence 
at values (N, J) = (3,3) from (2) will be analyzed for various spacings (Q) to obtain the sums 
S(N,J;Q,r). 

Table of Columnal Sums S(N, J; Q, r) for (W, J) = (3,3) (9) 

A 

0 
1 
2 
3 

\WJ',Q,r) 

e = ( j - i ) = 2 

r = 0 1 

1 3 
6 7 
6 3 
1 

14 13 

[JN /Q] = [33/2] = \3 

e = j = 3 
0 1 2 

1 3 6 
7 6 3 
1 

9 9 9 

[ J " / g ] = [33/3] = 9 

Q = (J+l) = 4 

0 1 2 3 

1 3 6 7 

6 3 1 

7 6 7 7 

[JN / g ] = [34/4] = 6 

Each row will have a row number (̂ 4) with values from 0< A <[N(J-l)/Q], where the 
brackets indicate the least integer function for the greatest integer not exceeding the enclosed 
expression. The columns in this table will have column numbers (r) in the range 0 < r < (Q -1). 
The values of the column series S(N, J\'Q,r) are analyzed for various interval spacings ( 0 at or 
near the value (J). 

For Q = J , the terms at (h = AQ + r) will be summed over integers 0 < A < [N(J -1) / (J)]. 
Each column (r) in the range 0 < r < (J-1) will have the sum for S(N9 J; Q, r) per equation (10). 
Table (9) above shows that the C(N, J; h) sequence at (N, J) = (3,3) has each columnal sum 
£(# , J ; e , r )equa l to (9 ) . 

S(N, J; Q,r) = TC(N, J; h) = J{N~l) for each (r). (10) 

In the binomial case of (J = 2) for Pascal's (classical) triangle, formula (10) generalizes the 
familiar fact that the sum of alternate terms (Q = 2) in any row is half the sum of the entire row 
from (8), since (JN~l) = 2(AM)= (l/2)2N=(l/2)(JN) when (7 = 2). It does not mean, however, 
that the sum of alternate terms of the generalized Pascal-de Moivre triangle with (J * 2) is half 
the sum of the row terms (a case that is dealt with in equations (19) and (20) of the next section). 

For Q = (J-1), the C(N9 J; h) terms at (/? = AQ + r) are summed over integers 0 < A < N. 
So then, for column locations (r) in the range 0 < r < (J-2), the column sums S(N, J; Q, r) will 
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be given by equation (11) for all N>1. In the (N, J) = (3, 3) example, the first column at (r = 0) 
has a sum of (14), which is one more than the sum of (13) at the other column(s), as seen in table 
(9). Equation (8) covers the linear (Q = 1) case at (J - 2). 

$(N, J; Q9r) = ZC(tf, J;h) = [(JN)/(J-l)] + l for J>2 and r = 0 
= [(JN)/(J-l)] f o r / > 2 a n d l < r < ( J - 2 ) . 

For Q = (J + T), the column terms at (h = AQ + r) are summed over the integers 0<A< 
[N(J~ 1) / (J +1)]. So, for column locations (r) in the range 0 < r < J , the sums S(N, J; Q, r) 
satisfy equation (12): 

S(N, J; ft r) = S C(tf, J; h) = [(JN) I (J +1)] + K. (12) 

The value of (K) in equation (12) is either one or zero, as determined in table (13) below. 

Table for if Values (13) 

Column Type 

Unique 

Common 

Condition for Column Type 

(iV + r) = 0(mod(J + l)) 

(JV + r ) * 0 ( m o d ( J + l)) 

AT = Odd 

£ = 0 

K = l 

N = Even 

K = l 

K = 0 

In these Q = (J+l) cases, one column is always unique. All the other columns will have 
identical sums that differ from the unique column by one. In the (TV, J) = (3, 3) example, where 
(N) is odd, the table for K values (13) indicates that the unique column will have (K = 0). Thus, 
from equation (12) and table (9), the unique column sum S(N, J; Q, r) equals (6). At N = 3, the 
only column location .(f) within 0 < r < 3 that satisfies (N + r) = 0 (mod 4) is at (r = 1), per the 
Condition in table (13). All other columns have (K = 1) and common column sums S(N, J; Q, r) 
equaling (7). 

So in general, for any interval spacing Q-{J + \J, o r J -1} , each columnal series with 
terms at h = (AQ + r) is summed over integers 0 < A < [N(J -1) / ( 0 ] . For the partition of the 
C(N, J; h) sequence with these spacings ( 0 , each column (r) in the range 0 < r < (Q -1) will 
yield a series result for S(N, J; Q, r) given by equation (14): 

5 ( ^ J ; e , r ) = [ ( ^ ) / ( 0 ] + 6,where6 = {Oorl}. (14) 

4. SUMMATIONS WITH QUADRUPLET CYCLES 

The Method of Ramus described in [1] and [9] uses the roots of unity, with its real and 
imagineiry parts, to partition the terms in the N^ row of the Pascal and the Pascal-de Moivre 
triangles. The terms of the C(N, J; h) sequence are likewise segmented here by using the second 
and fourth roots of unity. This segmentation creates four equations of series (A through D) in 
table (15), whose coefficients (Fr) repeat for every fourth term of the C(N, J; h) sequence. 

These repeating coefficients (Fr) in table (15) are the same as the coefficients (Fh) of the 
C(N\ J; h) terms from equation (3). For any series in (16), each (Fh) value equals the (Fr) entry 
in table (15) when {h = r (mod 4)}. The sum equation of series (A), for example, is expanded in 
(17)., 
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Coefficient Table for Series {A, B, C, D} and Quadruplet Partitions (Pr) (15) 

Coefficients (Fr) at r = 

Series A 
Series B 
Series C 
Series D 

Quadruplet (Pr) = 

0 1 2 3 

+ 1 0 + 1 0 
0 +1 0 +1 

+ 1 0 - 1 0 
0 + 1 0 - 1 

P P P P 
r0 r\ r2 r3 

Series (A,B,C,D) = Z{(Fh)C(N,J;h)} for 0<h< N(J-l). (16) 
Series (A) = T{C(N, J;h = At) + C(N, J;h = 4t + 2)} for 0 < t < N(J -1) / 4. (17) 

The creation of a quadruplet cycle from table (15) using the series {A, B,C,D} equations 
requires the identification of the relationships between the series equations and the quadruplet 
{P0, /} , P2, P3} equations. In the nomenclature of the S(N, J; Q, r) partition sums from [1], the 
quadruplet {Pr} equations will be defined as 

Pr = S(N, J; 4, r) since Q = 4 and for integers (r) within 0 < r < 3. 

The C(N, J; h) sequences thus created, whose sums are (Pr), will have spacings between the 
nonzero terms of (Ah = 4), compared with the nonzero term spacing of (Ah = 2) for those of the 
series {A, B, C, D). The corresponding transformation of the equations {A, B, C, D} into the 
equations {Pr} is given for each quadruplet location (r) from table (15) by: 

P0 = (A + Q/2, P^iB + D)/!, 
P2 = (A-Q/2, P3 = (B-D)/2. 

Now, in order to state the quadruplet equations, the actual formulas for the segmentation 
equations {A, B, C, D) must be obtained. The first two equations {A and B) are the equations for 
the sum of alternate terms for C(N, J; h) in the N^ row of the Pascal-de Moivre triangle. Here 
we state, from empirical analysis, that the series (A) starting at (h = 0) and the series (B) starting 
at (h- 1) have series summation formulas given by equations (19) and (20), where (N > 1) and 
(h) = J (mod 2): 

A = ((JN) + h)/2 (19) 
and 

B = ((JN)-b)/2, (20) 

where 6 = 0 for (J = even), or b = 1 for (J = odd). 
The two segmentation series {C and D} have equations that are obtained from the tables (22) 

and (23), respectively, with values of (±1,0, or + S), where S is defined by equation (21): 

S = ((-l)[N/4])(2[N,2]), (21) 

where the bracketed expressions in the exponents are least integer functions. 
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Table for Series (Q (22) 

Table for Series ( 0 

A11N>1 
' Ar=0(mod4) 
A^=l(mod4) 
JV=2(mod4) 
A^=3(mod4) 

Table for Series ( Q 

A 1 1 J V > 1 

A^=0(mod4) 
A^=l(mod4) 
Ar=2(mod4) 
^ = 3 (mod 4) 

J = 0 ( m o d 4 ) 

0 

J = l ( m o d 4 ) 

1 

Tab le for Series (D) 

J = 0 ( m o d 4 ) 

0 

.7=1 (mod 4) 

0 

J = 2 ( m o d 4 ) 

S 
S 
0 

s 

.7=2 (mod 4) 

0 
S 
S 
S 

J = 3 ( m o d 4 ) 

1 
0 

-1 
0 

.7=3 (mod 4) 

0 
1 
0 

-1 

(23) 

As an example of quadruplet analysis, the C(N, J; h) sequence from table (2) with (N, J) = 
(4,3) is listed below in the tabular form of Section 3 with (2 = 4). The values {A, B, C, D} are 
calculated from equations (19), (20), and (21) and tables (22) and (23). Then the {Pr} values, 
obtained from equations (18), give confirmation of their equality with the corresponding column 
sums. 

Column Sums of the C(N, J; h) Sequence 

r = 0 1 2 3 
1 4 10 16 

19 16 10 4 

J _ _ _ 
Sum= 21 20 20 20 

Series Equations 

,4 = (34 + l) /2 = 41 
B = (34-l)/2 = 40 
C = l 
D = 0 

Quadruplet {Pr} Equations 

P0 = (A + Q/2 = (4l + l)/2 = 2l 
Pl = (B + D)/2 = (40 + 0)/2 = 20 
P2 = (A-Q/2 = (41-1)/2 = 20 
P3 = (B-D)/2 = (40-0)/2 = 20 

So, as just illustrated, the four quadruplet series {Pr} may be built from combinations of the 
series {A, B, C,D}9 according to equations (18). Also any desired arrangement of the four {Pr} 
equations can be combined further with any choice of coefficients (Gr) represented as num-bers, 
variables, or functions, as shown: 

Quadruplet Arrangement = X{(Gr) (Pr)} for (r) within 0 < r < 3. 
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5. SUMMATIONS BASED ON MOMENTS 

The definition of moments about a point for the C(N,J;h) distribution was introduced by 
equation (4) in Section 1. The two moments considered here are the moment (v) taken about the 
origin and the moment (ju) taken about the mean (M). The connection between Rth moment 
calculations and the summations of C(N, J;h) terms is indicated by their respective evaluation 
formulas from equation (5), when summed over 0<h< N(J-1). .. 

ZmRC(N,J;h)} = (vR)(JN), (24) 

mh-M)RC{N,J;h)} = {»R)(JN)- (25) 
The mean (M) is the midpoint of the range of (h) values and thus equals N(J -1) / 2, which may 
include half integers when N and (J -1) are both odd integers. 

The sum of all C(N, J; h) row terms in a Pascal-de-Moivre triangle equals (JN), which was 
substituted for Y,C(N,J;h) in the typical definition of moment equations [3]. Multiplied by 
(JN), the moment equations (v^) and (juR) give the C(N, J; h) moment summations (24) and 
(25). 

To find the moment equations for (v^) and (juR), we derive their exponential generating 
functions: (//egf) and (vegf). And then, by expansion of the exponential generating functions, the 
coefficient of the term {(tR)/ R\) is the equation for the J?* moments for (fiR) and (v^), in the 
summation over integers 0 < i < QO3 as outlined in [3]: 

AW = E0O(/')/CO, 
vegf = 2(v,.)(^)/(/!). 

The exponential generating fimction for (/iegf) turns out to be the exponential power series 
shown in (26), which is summed over integers 2 < r < QO . The notation Exp{x} is defined as (ex). 

/iegf = Exp{Nm-l)r($rW )/(r!))}, (26) 

where ^r = ((Jr) - l)(Br) I r with Br = the r* Bernoulli number. 
Each Bernoulli number (Br) can be derived as the coefficient of ((£r) / r!) in the exponential 

generating function (BQgf) from the summation in (27) for 0<i <oo. From reference [10], the 
sequence of Bernoulli numbers (Br) for (r > 1) is {(-1 / 2), (1 / 6), 0, (-1 / 30),...}. 

BQ0=lXBd(ti)'(i^ = t/{(et)^. (27) 

The accuracy of the (juegf) formula in (26) has been confirmed empirically by comparing the 
distribution results on the left-hand side of equation (25) with the moment equation results of the 
right-hand side of equation (25). These two approaches gave identical results through i?<32, 
which represented the limit at which the author's computer hardware capability could complete 
the calculations in a reasonable time. 

A couple of cases will illustrate the creation of the initial (fiR) equations, in terms of their 
distribution variables (Nmd J). Also, a specific example with (N, J) = (2,3) can demonstrate the 
numerical equality between the left-hand and right-hand sides of equation (25). 

For the case in which R = 2, the coefficient of (t2)/(2\) in the expansion of the (//egf) for-
mula in (26) gives the variance (ju2) of the C(N9 J; h) distribution: 
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M2 = N(S2) = N(J2 - l)B2 12, where B2 = (1 / 6), 
ju2 = N(J2-I)/12. { j 

When multiplied by (J'v), this second moment (ji2) formula (28) yields the C(N,J;h) 
moment summation formula from (25). 

Z{(h - M)2C(N, J; h)} = fi2{JN) = N(J2 - l)(JN) 112. (29) 

The result of (29) generalizes the fact that the second moment summation of terms in the N^ 
row of Pascal's (classical) triangle equals the value N(2(-N~2)), as shown in (30) for (J = 2): 

Z{(/i - MfC(N, 2; h)} = M2(2N) = N(22 -1)(2") /12 = N(2(N~2)). (30) 

For symmetrical distributions like C(N, J; h), the moment (juR) about the mean (M) will be 
zero whenever R is an odd integer. Thus, the coefficients of (t2i+l) I ((2/ +1)!) in the expansion of 
G êgf) m u s t ^e z e r o

? f°r all integers (i > 1). All of these coefficients (ju2i+i) contain a factor with 
a Bernoulli number of odd index, which is zero per [10]. So the moments (juR) are zero when R 
is an odd integer, because the corresponding Bernoulli numbers are zero. 

For the case in which R = 4, the coefficient of (/4)/(4!) in the expansion of formula (26) for 
(Megi) gives the 4th moment (ju4): 

M4 = {3N2(S2f} + {N(S4)l 
ju4 = {3N2((J2 - l)B212)2}•+ {N((J4 - l)B414)}3 whereB4 = (-1 / 30), (31) 
^ 4 = {# 2 ( ( J 2 - l ) 2 ) /48}~{#( / 4 - l ) /120} . 

The specific example of (ju4) with (N, J) = (2,3) will be left to the reader to confirm that the 
formulas in equation (25) satisfy Z{(/t - 2)4C(2,3; h)} = (ju4)(JN) = (4)(32) = 36. 

Next, the exponential generating function (vegf) for the moment about the origin is shown to 
have the same formula as (juQgf) in (26), except that the summation index (r) begins here at 
(r = 1) instead of at (r = 2). 

vegf = Exp{Nm-W(SrW )/(r!))}, (32) 

where Sr = (((Jr) - l)(Br) I r\ with Br = the r* Bernoulli number. 
By expanding the exponential generating function (vegf), the moment equation for (v^) can 

be obtained as the coefficient of the ((tR)/ R\) term. Again formula (32) was confirmed empiri-
cally to R = 32. Select cases for R = (1,2, and 4) will show the moment equations in terms of the 
distribution variables (TV) and (J). A numerical example of (v4) at (N, J) - (2,3) can illustrate 
the equality between calculations of the left-hand and right-hand sides of equation (24). 

The first moment (vj) gives the value of the mean (M) of the C(N, J; h) distribution. The 
mean (M) is the midpoint of (h) over the range 0<h< N(J-1), which must equal N(J-1)/2. 
And this value is identical to the moment derivation from (32) for the first moment (vx): 

vl=-N(Sl) = ~N(Jl-l)Bl/l wherefil = (-l/2), 
vt = N(J-l)/2 = M. { ) 

The result for (vx) generalizes the known binomial formula in [10] for the summation of 
Z{(h)lC(N, J;h)}=N(2fN-l\ since at (J=2) this also equals (vl)(JN) = (N/2)(2N) = N(2)(N-l). 

Also, from the (vegf) expansion at (i? = 2), the second moment formula for (v2) becomes 
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v2 = N2(( J -1)2 / 4) + N(( J2 -1) / (12)). (34) 

The binomial case for X{(h)2C(N, J;h)} in (24) is given at (J=2) by taking (v2) times (2^), 
where (v2) = (l/4)N2 + (1/4)N. So Z{(h)2C(N,2;h)} = (v2)(2N) = N(N + l)(2{N-2)). 

The fourth moment (v4) is obtained from the coefficient of ((*4)/4!) in the expansion of 
(vegf) in formula (32), with the Bernoulli numbers for (r >1) of {(-1/2), (1/6), 0, (-1/30),...}: 

v4 = N\(J-l)4116) + N\(J-l)2(J2 -1) /S) + N2((J2 -I)2148) -# ( ( J 4 -1 ) / 120 ) . (35) 

Calculation of (v4) for a C(N, J; h) distribution with (N, J) = (2,3) will be left to the reader to 
confirm that the formulas in equation (24) satisfy Z{(/i)4C(2,3; h)} = (v4)(JN) = (52)(32) = 468. 

The mean (v{) was shown in (33) to be equal to (N(J-l)/2), and the variance (//2) was 
given in (28) as (N(J2 -1)/12). Now, the two exponential generating functions from (26) and 
(32) can be redefined in terms of the mean and variance. To make the adjustment, the summa-
tion factor (N) is multiplied by ((J2 -1) /12) to get the variance (ju2). To balance this multipli-
cation, the terms (Sr) are then divided by the same ((J2 -1) /12) factor, thus creating a new sum-
mation term (Tr). 

Applying this transformation to formulas (26) and (32), alternative definitions of the expo-
nential generating functions for (juQgf) and (vegf) become the exponential power series in (36) and 
(37), with sums of integer index (r) over 2 < r < oo for (juQgf) and over 1 < r < oo for (vegf): 

//egf = ExpU/^KHy^xo/CH))}, (36) 

vegf =Exp{(M2)U(-W(Tr)(0/(rm, (37) 
where Tr = (12)Sr I (J2 -1) = {(12)£r / r) {((Jr) -1) / {J2 -1)} with Br = the r* Bernoulli number. 

The special characteristics of the (Tr) sequence depend on the Bernoulli numbers (Br), by 
definition. Like the (Sr) sequence, the values of (T2j+1) are zero since (B2j+1) are zero for integers 
(/' > 1). Additionally, the value of (T2) is always equal to one for all (J). 

T2 = {(12)B2/2}{((J2)-1)/(J2 -1)} = {(12)B2 /2}{1} = 1, since B2 = l/6. 

With equations (36) and (37), various moment equations such as (ju4 and v4) can be derived: 

//4 = 3(//2)2(r2)2+(^2)(r4), (38) 

v4 = (M2)\-T,)4 + 6(^2)3(-7;)2(r2) + 3(ju2)2(T2)2 + (^)(J4) . (39) 

Since (ju2) = (N(J2-I)/12) from equation (28), specific distributions can be evaluated 
exactly by knowing the values of (N and J). In the fourth moment example for a C(N, J; h) 
distribution with (N, J) = (2,3), the (Tr) sequence for r>\ begins with {(-3/2), 1, 0, (-1),...} 
and (ju2) = 413. The reader is invited to confirm that the fourth moments are again (//4 = 4) and 
(v4=52). Therefore, either interpretation of exponential generating functions, with Sr or Tn 

gives the correct moment value. 
The general rule for the leading term in the moment equation (juR) becomes apparent by 

observation of equation (36). Because the odd-indexed Bernoulli numbers (Br) are zero for r > 1, 
and because (2£) = 1, the first term in the (juR) moment equation will be a double factorial 
(i?-l)H times (ju2) to the power (R/2). In the sample equation (38) for (ju4), this first term 
was 3(//2)2-
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Since the summation in the exponential generating function for (vegf) of (37) begins at index 
(r = 1), the leading term in the moment equation (v^) is always (-TX)R times (ju2)R. In example 
(39) for (v4), this first term was (-7J)4(//2)4> o r simPty (~T\M2)4- But> bY equation (40), the 
product term (~Txju2) is just equal to {N(J-l)/2}, which is the value of the mean (vt), as seen 
in equation (33). Therefore, the leading term in the moment equation (v^) is always (vx)R. 

(-TlM2) = {6/(J + l)}{M2} - {6/(J + l)}{N(J2-l)/l2} = {N(J-l)/2} = (vx), (40) 

since i; = {(12)B111}{((J1)-1)/(J2-2)} = {-6/(J + l)} with Bx = (-1/2). 
Also, the term (-Txju2) is the coefficient of ((f) I (r!)) at r - 1 in the exponential generating 

function (vegf) from (37). This first term of the summation can now be rewritten by the equality 
(-Txju2)(tl) /(!!) = (vxt). If this term is extracted from the summation in (37), the remaining non-
zero terms in the summation have even indices in (r), since all of the odd indexed terms have a 
factor that is zero; i.e., the odd indexed Bernoulli numbers B2i+1 for / > 1. Using this information, 
both exponential generating functions (juQgf) and (vegf) from (36) and (37) can be rewritten with 
the zero-valued summation terms excluded. The exponential generating functions are now both 
summed for the redefined index (r) over all integers in the range 1 > r > oo: 

M^ = Exp{(//2)S((r2r)(^)/((2r)!))}, (41) 

vegf = Exp{(v10 + (^2)Z((r2r)(/20/((2r)!))}, (42) 

where T2r = (\2)S2r/(J2-l) = {(12)52r/(2r)}{((J2r)-l)/(/2-l)} with B2r= the (2r)* Bernoulli 
number. 

A comparison between moment generating functions of the discrete C(N, J; h) distribution 
and a normal distribution in the continuous case is useful in this format. The exponential generat-
ing functions for the continuous and normal distribution are given in [3] as: 

juQgf (continuous & normal) = Exp{ju2(t2) 12} and 
vegf (continuous & normal) •= Expffyf) + ju2(t2) 12}. 

Since (T2) was shown to be equal to one, the continuous & normal (C&N) distribution and 
the discrete C(N, J; h) distribution have moment generating functions that have identical initial 
summation terms. The relationships between the moment generating functions of both of these 
distributions are summarized in equations (43) and (44), with the second factor Exp{E} being an 
exponential summation for integers 2 < r < oo: 

Me&c(N,jM = M^czKpxp{U(W(t2lU(2r)\))} (43) 
and 

v e g f ( c ( ^ ^ (44) 

where T2r = {(12)B2r/(2r)}{((J2r)-i)/(J2-I)}. 
Besides the methodology of creating moment equations from exponential generating func-

tions, another technique was originally used that involved recursion equations. The main recur-
sion equation developed related the i?* moment (juR) about the mean (vx) to the previously 
generated moments v^R_h^ about the origin. The summation was taken over all integers of (h) in 
the range 0<h<R\ 
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^ = 2(-l)h(5)(Vi)*(v(A_fc)). (45) 

The recursion equation (45) originated from observation of moment equations (juR) from [3] 
for R = 0 through 4, including the oft quoted (ju2) = (v2) - (v^2. This latter formula is apparent 
from equation (34) in the form (v2) = (vj)2 + (ju2). 

When R is an odd integer, the moment (juR) is zero. Therefore, the recursion equation can 
also relate successive moments (v^) to previous moments (v^.^). And now the summation is 
taken over all integers of (h) in the range l<h<R. Thus, after defining (v0) = 1, the recursion 
equation for (v^) at (R =odd) becomes 

v^Zi-ir^y^iv^). (46) 

6. SUMMATIONS OF ALTERNATING SIGNED TERMS 

The alternating signed version of the moment equations yields the following summation for-
mulas for the C(N, J; h) terms, when summed over integers 0<h< N(J -1): 

U(-Vh(h)RC(N,J;h)} = vRa, (47) 

£{(-l)*(A - M)RC(N, J;h)} = MRa, (48) 

where M = (yt) = N( J -1) / 2. 
Two separate presentations on the moments for the alternating signed C(N, J; h) terms will 

be given for cases when (J) is an odd integer and when (J) is an even integer. Thus, two differ-
ent notations will be assigned for each case: 

1 • (vRa) = (vR,d) a n d (MRJ = (MR,d), when J = odd; 
2- (vRa) = (vR,e) and (MRa) = (MRJ, when J = even. 

Compared to equations (24) and (25) of the previous moment section, the most apparent 
difference in the summation equations of (47) and (48) is that they do not have the common factor 
(JN). 

In the initial definition of the moment equations (5), the common factor to be multiplied by 
(vRa) and (JURC) w a s the sum of all the distribution terms in the Nih row of the Pascal-de Moivre 
triangle. From the discussion on quadruplet cycles, the difference of the two alternate term 
equations (A minus B) from equations (19) and (20) will give the sum of the alternating signed 
C(N9 J; h) distribution. For all cases when (J) is odd, it has a value of one: 

Z{(-l)hC(N, J; h)} = 1 for J = odd. (49) 

When (J) is an odd integer, the moment equations for ( v ^ ) and (JURJ) are derived directly 
from their exponential generating functions: (juegf,d) anc* (vegf,̂ )- The exponential generating 
functions are expanded to obtain (juRd) and ( v ^ ) as coefficients of the term ((tR)/.R\) in the 
summation over integers 0 < i < oo, as outlined in [3]: 

>«*«/ = SXA^XO/CO; 
v.gt^SXvXO/O-!)-
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In this (J = odd) case, the exponential generating functions for (jue^d) and (vegf ̂ ) turn out 
to have identical formulas, as expressed by the exponential power series in (50) and (51). Just the 
ranges of their summation index (r) differ, with 2 < r < oo for (//egJW) and 1 < r < oo for (vegU) : 

M^d = Exp{NZ((-lY(SrJ(f)/(r\))}y (50) 

v^d = Exp{NZ((-lY(Sr^(n/(r!))}, (51) 

where Srj = ((2r) - 1 ) ^ = ((2r) -1)((Jr) - l)(Br) 1 r with Br = the r* Bernoulli number. 
These exponential generating functions (juQg^d) and (vegf^) for these alternating signed dis-

tributions are closely related to the exponential generating functions (//egf) and (vegf) of (26) and 
(32) for the positively signed distributions. Only the summation term (Srtd) in (50) and (51) 
differs from the summation term (Sr) in (26) and (32) by a factor of ((2r) -1) . 

The same transformation methods described in (36), (37), (41), and (42) will change the sum-
mation variables (N) and (Srtd) in equations (50) and (51) into the variables (ju2) and (TTtd) for 
equations (52) and (53). These new exponential generating functions are both summed over all 
integers in the range 1 < r < oo. Note: (v^) = vY and (//2^) = 3ju2. 

M^d = Exp{(//2)Z((r2rj,)(r2'-) / ((2r)!))}, (52) 

Vegtrf = Exp{(vlt + (M2)Z((T2rJ(t2r)/((2r)\))}, (53) 

where T2r,d = ( 1 2 ) ^ ^ / ( ^ - 1 ) = {(22r)-l}{{\2)B2rl{2r)}{((J2r)-\)l (J2-\)} with B2r = the 
(2r)m Bernoulli number. 

The fourth moments (p4td) and (v4td), for example, can be obtained from the coefficient of 
((/4)/4!) in the expansions of (MQgf,d) anc^ (vegf,d) 'm formulas (52) and (53). The format of these 
formulas is the same as for (ju4) and (v4) in (38) and (39), where the definition of each summation 
term (Trtd) has only changed from (Tr) by a factor ((2r) -1). 

v4frf = 0hf(r\d)A + 6(M2)\-TKdf(TXd) + 3(ju2)2(Txdf + (jU2)(T4J. (55) 

A specific fourth moment example for (ju4td) and (v4td) of a distribution with (N, J) = (2, 3) 
can be calculated by inserting the proper values for {ju2) and (Trtd) in (54) and (55). Here, the 
(Trtd) sequence for ( r>l ) begins at {(-3/2),3,0,(-15),...}, and'(//2) = ( # ( / 2 - l ) / 1 2 ) = (4/3). 
Thus, for (N, J) = (2,3), the reader can find that equations (54) and (55) agree with the moment 
values in the formulas from equations (47) and (48) to give (ju4fd) = 28 and (y4id) = 140. 

Now for the other type of distribution, with (J) as an even integer. In this case, the sum of 
the alternating signed C(N,J;h) distribution is zero for JV>1, as in the binomial (J = 2) case 
from [10]. The left-hand side of equations (47) and (48) does exist. The interpretation of the 
terms (ju^) and (vR}6) on the right-hand side may not be clear, since these moments and the dis-
tribution density f(h) from equation (4) have a denominator of zero; thus, they may be unde-
fined. For convenience, these terms (//^e) and (vRt&) will still be called moments, in the sense 
that they are being used to generate the summation formulas in (47) and (48). 

The simplest results for the Rth moment equations (juRi6) and (v^ ) for the ( J = even) cases 
occur when (N) is greater than (R). Then we do get moment equations of zero: 
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juR,e = 0 and vRe = 0 forN>R. (56) 

However, for (R> N), the moment values are predominantly nonzero, when (J) is an even 
integer. The moment equations for (vRe) and (ji^) can be derived if they are broken down into 
two parts: a common factor (CF) and an equation (mk) from the corresponding exponential gen-
erating functions for (//) and (v). The moment equations are: 

MR,e = (CF)(mk(»)), (57) 
and 

Vft. = (CT)0»t(v))s (58) 

where (CF) = {(-V)N(J/2)N(N\)}{"N). 
The equation for (CF) was obtained by empirical analysis. The equations (mk) are the coeffi-

cients of the term ((**)/ k\) in the expansion of the exponential generating functions, where the 
value of (k) is defined as (R-N). The summations in the exponential generating functions for the 
(mk) coefficients are taken over all integers r > a, with a = 2 for (juRe) and at a - 1 for (vRe). 

/ i ^ . = EXp{^Z((-l)r(5r, ,)(0/(H))} f o r 2 < r < * , , (59) 

vegf;e = Exp{^S((-l) r(5r ; e)(0/(H))} for l£#•<«,, (60) 

where Sre = {(Jr)-(2r) + l}{(Br)/r) with Br = the r* Bernoulli number. 
Again a useful transformation takes summation variables (N) and (Sr e) in (59) and (60) into 

the variables (//2) and (Tre) for equations (61) and (62). Both of these new exponential generat-
ing functions have summations taken for all integers 1 > r > <x>. Note: (vle) = Vj. 

^gf,, = Exp{(//2)Z((r2r)e)(^)/((2r)!))}, (61) 

Vegf^-ExpKnO + ̂ ^ S a ^ ^ ) / ^ ) ! ) ) } , (62) 

where T2r,e = (U)S2r,e I (J2 -1) = {(J2r) - (22r) +1} {(12) / (J2 -1)}{(£2r) / (2r)}. 
The reader is challenged to find the (//^e) moment at (R = 4) for the alternating signed 

C(JV, J; h) distribution with (N, J) = (2,2). In this example, the moment equation (57) has an 
index of (k = R - N = 2), with factors (CF) =12 and mk (ju) = 1 / 6, which give a value for (/uRe) 
equal to 2. 

A Final Note: Conditions involving distribution symmetry and the patterns of Bernoulli num-
bers in the exponential generating functions favor the proposition that all of the moment equations 
and their generating functions will remain valid for all possible C(N, J; h) moment summations 
with distribution variables (N9 J) and moment numbers (R) over all positive integers. Extensive 
empirical evidence suggests optimism. 
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