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1. INTRODUCTION 

We shall consider a stack of r glass plates. A light ray comes from the upper left direc-
tion, reflecting at some inner boundary surfaces of the plates and passing through others. After 
repeated reflections and transmissions, the light ray goes away to the upper-right or the lower-
right direction. How many possible paths are there in this case? The closed formulas for coeffi-
cients in the recurrent relations arising from the problem of enumeration of the possible reflection 
paths of light rays in the multiple glass plates were first given by J. A. Brooks (cf. [1, p. 271, eq. 
T(n)]). Using the signed ballot numbers D(k, j), which are defined below, we can also obtain the 
formulas ([5, p. 385, eq. (3.17)]). A matrix B = B{r) constructed using the numbers D(k, j) in a 
particular but natural manner indicates some interesting properties; for instance, "the sparseness" 
in the sense that the number of zero-elements of the matrix is maximum among the equivalent 
matrices. Let BT be the transpose of B. Then the Catalan numbers (cf. [3]) appear in the matrix 
product of BT and B. 

The contents of this paper are regarded as continuations of [5]. For completeness, we will 
now summarize the results of [5]. 

Let A be an r by r matrix such that 

A = 

(This matrix arises when one enumerates the increased numbers of paths of light rays produced by 
an extra reflection fromr plates, in an iterative scheme (cf. [5].) 

Then we have 
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* This paper, presented at the Seventh International Research Conference held in Graz, Austria, in July of 1996, 
was scheduled to appear in the Conference Proceedings. However, due to refereeing problems and deadline dates, 
we are publishing it in this issue of The Fibonacci Quarterly to assure its timely publication. 
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Let L be a column vector of size r such that 

f=(i , i , i , . . . ,1,1,1). 

Then successive multiplications by A'1 give the following sequences: 

fA-1 =(0,...,0,D(l,0)), 
?A-2 =(Z)(2,0),0,...,0), 

. . . , 
• • ' ? 

fA-2m+i = (o,...;o,D(2m-1,0),D(2m-1,1),...,D(2m-\,m-1)), 
lTA-2m = (D(2m,m-l),D(2m,m-2),...,D(2m,0),0,...,0), 

• • • ? 

where 

,0(1, 0); D(2,0); D(3,0), Z)(3,1); D(4,0), Z)(4,1); D(5,0), Z)(5,1), Z)(5,2); 
... = 1; 1; -1,1; -1,2; 1, - 3,2;..., respectively. 

From the process used to produce D(k, j), we can obtain the following recurrence relations 
(cf [5, p. 382, eqs.(2.1)-(2.3)]): 

D{k,j) = 
\-\f{D(k-1, j)-D{k -1, j-l)} for 1 < j < L^J , 
( - l )L^ forj = 0, 
0 otherwise, 

where [xj is the floor function of D. Knuth and represents the greatest integer less than or equal 
to x (see [4]). Hence, we can get a closed expression for the numbers D(k, j) (1 < k; 0 < j < 
L(*-1)/2J), namely, 

D(k,j) = (-li^^J-^j (1) 

(cf. [5, p. 382, eq. (2.6)]). The ballot numbers can be expressed as 

(cf. [2, p. 73]). So our numbers are called "signed ballot numbers." The Catalan numbers cn are 
usually defined as 

1 (2n* 

In particular, for both even and odd cases, if k - 2kl and k = 2k' + \9 respectively, we have 

D(2k', * ' - ! ) = D(2k> +1, *') = Y ^ k ' ) = cf 

Hence, we can regard our numbers {D(k,j)} as signed ballot numbers and, simultaneously, as a 
generalization of the Catalan numbers. 
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Let B be a matrix such that 
B = (A~ll A~\ ..., A~{r~l)l A~rl). (2) 

(In [5], we use the symbol BT in place of B (see [5, p. 381]). 
It can be shown that the Catalan numbers cn and zeros appear alternately in the first row and 

the last row of B (cf [5, p. 382, eq. (2.7)], and see B below for the case r = 9). 
For m = . . . , -2 , -1,0,1,2,..., let us consider an associated set of linear equations, that is, 

(Am~l\, Am~2l,..., Am~rl)x = Am\. (This x is the coefficient vector of the recurrent relations aris-
ing from the problem of light rays in multiple glass plates (cf. [5]).) Then the matrix B is the 
coefficients matrix for the case m = 0, from which we can obtain the solution x = B~ll, where B is 
a nonsingular matrix because of (7) below. 

Let Tn = T^ be the total number of ray paths formed by the r plates after n reflections, and 
let t_ = /(r) = {Tn_h T„_2,..., Tn_r)T. It is shown in [1, p. 271] and [5, p. 385, eq. (3.17)] that 

rn - (Bri\)Tt=y (-i)^J I L^J+J T • 

For the (p, q) element zp^q of B l, we notice that the following are also valid: 

v , P ' - i + » = ( - 1 ) p ' " 1 ( 2 ^ 2 - t w ) - " 1 ^ ^ ^ i - r / 2 J ' 1 - w - L r / 2 J - ^ + 1 ' 

zpq = 0... otherwise. 

(See [5, eqs. (3.8)-(3.10)].) An algebraic manipulation yields 

(_l)/>/2-ifW2 + <7 fj f o r / ? e v e n ; pl2<q<lrl2\, 

p,q 
(_l)b'2jr>-+b/2j q\ forpodd. \rl2\ + \<q<r-\_pl2\, (4) 

otherwise. 

For example, in the case r = 9, we have 
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and 

B~l = 
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26 CATALAN NUMBERS IN BTB 

Now we will discuss further properties of B. For matrix B, computing BTB, we have the 
Catalan numbers and zeros that run parallel to the skew-diagonal line. From the lower-left to the 
upper-right of BTB, the numbers cQ,ch...,cn appear on the first, the third, ..., and the (2« + l)st 

line, respectively; i.e., we have 

B'B: 
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where r = 2r' + 1. In the case r = 2r', to obtain the expression BTB, we have to delete the last 
row and the last column from the one above. All the odd skew-diagonal elements of order 2n +1 
running from the lower-left to the upper-right of BTB are the Catalan number cn, while those of 
even order are zero. Namely, we have the following theorem. 

Theorem 1: For every k(l<k<r),it holds that 

[cu i for (i, /) = (k+m9 k-m) and (k--m, k +m), 
(BTB\ , = \ 

,J [0 otherwise, 
where 

f0,l , . . . ,*-2 for 2 <* <\jf-J, 
m-- 10,1,... ,/--* f o r [ ^ J + l<A:<r. 

Proof: From (2), consider an odd-skew-diagonal matrix element, we deal with the two cases 
simultaneously: 

= (0,..., 0, D(2k -1,0),..., D(2k -1, * - 2), D(2k -1, * -1))(0,..., 0, c0)T 

= D(2k-\,k-l)c0=ck_v 

k±m,k+m A " (BTB\ 
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Next, consider an even-skew-diagonal matrix element: 

In the upper sign case, we have 

= fA-3kA-1l 
= (D(2k,k-1),D(2k,k-2),...,D(2k, 0), 0,..., 0)(0,..., 0,c0f 
= 0, 

where 

m = 
[0, !,...,(•) f o r l < * < | _ ^ J 2 J ' 

|0,l,.. . ,r-Jfc-l for\ff\ + l<k<r-\ 

[k-2 forr = 2r' + l, 

where 

W " " U - 1 forr = 2r'. 

In the lower sign case, we have 

= lTA-2k+2A-ll 
= (D(2k-2,k-2XD(2k-2,k-3l...9D(2k-2,0X0,...,0)(0,...,0,c0) 
= 0, 

where 

fo,l,...,&-2 for2<£<|/±±J, 
[0, l , . . . , r -£ f o r ^ J + l ^ ^ ^ r . 

This establishes Theorem 1. 

As a corollary, we also have, from (1): 
l(k-m-l)/2j 

(BTB)k±m^m= £ • D(k±m,m + j')D(k*m9j) 
j=o 

l(k-m-l)/2j f x . -
1 V/Z.T- o •\2[k±m\(k + m 

T 

_ i _ L V £x r^±^Y^ 
7 

where 

(o, ! , . . . , £ - ! f o r l < £ < L ^ J , 
m-{ 

(0,l,.. . ,r-& f o r ^ J + l ^ ^ ^ r . 

This is a binomial identity for the Catalan numbers. 
For example, in the case r - 9, we have 
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BTB: 
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We may remark here that BBT is a particular kind of block matrix, with symmetric blocks in 
the main diagonal. For example, in the case /* = 9, we have 

BBT = 

26 
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89 
14 
0 
0 
0 
0 
0 

-218 
213 
-88 
14 
0 
0 
0 
0 
0 
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-88 
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0 
0 
0 
0 
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3. SPARSENESSOFBANDir1 

We may call B "a sparse matrix" (for A) in the sense that, for a regular matrix A, it holds that 

and, simultaneously, that 

max n{AmB} = n{B] 
m: integer 

max n{B'1Am} = n{B-1} 
m: integer 

where n{M) is the number of zero-elements of a matrix (or vector) M. We shall establish below 
that 

n{B} = n{B-l} = l^{3^f}-l\ 

\B\ = \B~l\ = (-lfr/2K 

To prove these statements, we need the following lemma. 

Lemma: For nonnegative integers m > 0, we have 

f L l I W J - ^ - ' - L f J fori» = 2m', 

lLiJ ( 3 L Z fJ- 2 ) - ' t f J form = 2 ^ + 1. 

Proof of the Lemma: From the expression f A~m in Section 1, it follows by inspection that 

»{^"1} = 0 forall»>0, 
n{A-l\} = r -1, 
n{A-2\} = /•-!, 

n{A-mB) •• (5) 
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where nf = 2r -1. Hence, for m > 0, we have 

n{A~mB\ = n{(A-"-ll A'™-2!,..., A-^l)} 

To establish the Lemma, we may calculate the last summation separately for the even and odd 
cases of both rn and r. 

First, in the case in which m - 2m', we obtain the following results: 
(i) Whenr = 2r' + 1, we get 

n{A~mB) = r2 +m' +r' + l-2(m' + 1+ •••+m' + r' + m' +rf + 1) 

= 3r '2 + 2r' - m'(2r' +1) = [fj (3 [ ^ J -1) - r [ f J. 

(ii) When r - 2r', we get 

n{A'mB) = r1 -2(m' + 1+ ••• +mf +r') 

= 3r'2 - *" - 2rW = L i M ^ J " 0 "^ f 1 
The case in which m = 2m' + 1 is derived in an analogous fashion, so we omit the discussion 

for brevity. This proves the Lemma. 

We now have the following theorem. 

Theorem 2: 
(a) For the r by r matrix B, we have 

»{*Hii(3m-i)> (6) 
l*|=(-l)L*J, (7) 

max n{AmB} = n{B). (8) 
m: integer 

(b) For the matrix B~l, we have 

«{5-1} = LfJ(3^J-l), (9) 

|5- l |=( - l ) W J , (10) 
max n{BrlAm}=n{Br1}. (11) 

m: integer 

Proof of (a): In (5) of the Lemma, putting m - 0, we immediately have (6). 
For (7), the proof is by induction. If r = 2, J5(2) is a skew unit matrix of order 2. Hence, we 

have |i?(2)| = - 1 . Here, we note that in order to construct i?(r+1) of order r +1 from i?(r) of order 
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r, we must affix the column vector A~r~ll of size r +1 to B(r) as the last column, and also affix 
the row vector (0, 0,..., 0,D(r + 1, 0)) of size r + 1 to B{r) as the central row. Using Laplace's 
expansion theorem, we have 

|B(r+1)| = (~-l)^r+2^+r+lD(r +1,0)|5( r ) |- (-1)L(^)/2J. 

Thus,, we have the desired result. 
For (8), from (2) for / (1 < / < r), we have 

n{AlB) = n{(Al-ll Al~\ ..., 1,..., Al-rY)}. 

Since columns of AlB for which the exponent of Al~s is nonnegative (l<s<I) have no zero-
elements, we have 

n{B} > n{AB} > n{A2B) > • - • > n{ArB) 
= n{Ar+lB} = n{Ar+2B} = • • • = 0. 

On the other hand, by virtue of the Lemma, we have 

n{B) > n{A~lB} > n{A~2B) > • • • > n{A-r*+lB) 

= n{A~r*B} = n{A~r*-lB} = • - • = 0, 

where 
|4r' + l... forr = 2r' + l, 

r* = { 
4r ' - l . . . forr = 2r?. 

This proves (a). 

Proof of (h): For (9), from the available range of each subscript in the expression for the 
elements of B~l [see (4) above], we can count the number n{B~1} of zero-elements of B~l. 

The validity of (10) follows from (7). 
To establish (11), we must count the number of zero-elements of B~lAm. Let L, C, and R be 

the number of zero-elements of B~lAm (0<m<r-l) in the left parts (l<j< [fr -m)l 2J), in the 
central parts (L(r-/w)/2J + l<y'<L(r-w)/2J + /»), and in the right parts (l(r-m)/2j + m + 
1 < j < r ) , respectively, where j is a column number. Then we can easily obtain 

c=o, 

(12) 

Since, for a natural number n (see [4]), n = [f J + |_'22lJ> w e obtain 

n{B-lA-m} = L + C + R 
= ±(r-m)(r + m-l) + L£flJL£=f±1J-

It is easy to observe that n{B~lA~m} is a strictly decreasing function of m. On the other hand, it 
can be shown that 

niB-'A) = L^JLU H L ^ l ^ J +1) < »{B-1} 
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and 
n{B~lA2}=:n{B-lA3} = '-' = 0. 

Hence, we get the following relation: 

n{B~1} >n{B~lA} >n{B~lA2} = n{B~lA3} = -- = 0. 

Thus, (11) is obtained. This completes the proof of (b). 
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