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1. INTRODUCTION 

Tronic" is an old-fashioned term meaning "the product of two consecutive integers." (The 
reader will find the term indexed in [1], referring to some half-dozen articles.) In this paper we 
show that the only Fibonacci numbers that are the product of two consecutive integers are F0 - 0 
andi^3 = 2. 

The referee of this paper has called the author's attention to the prior publication (December 
1996) of this result in Chinese (see Ming Luo [3]). However, because of the relative inaccessi-
bility of the earlier result, the referee recommended publication of this article in the Quarterly. 

If Fn = r(r +1), then 4Fn +1 is a square. Our approach is to show that Fn, for n'& 0, ±3, is 
not a pronic number by finding an integer w(ri) such that 4Fn +1 is a quadratic nonresidue modulo 
w(ri). There is a sense in which this paper may be considered a companion paper to Ming Luo's 
article on triangular numbers in the sequence of Fibonacci numbers: If Fn is a pronic number, then 
Fn is two times a triangular number. We shall use two results from Luo's paper, and take advan-
tage of the periodicity of the sequence modulo an appropriate integer w(ri), enabling us to prove 
our result through use of the Jacobi symbol (4Fn +1 \w(n)) in a finite number of cases. Our main 
result is the following theorem. 

Main Theorem: The Fibonacci number Fn is the product of two consecutive integers if and only 
if n = - 3 , 0, or 3. 

2. IDENTITIES AND PRELIMINARY LEMMAS 

Let n and m be integers and {Ln} be the sequence of Lucas numbers. Properties (1) through 
(4) are well known, and (5) was established in Luo's paper [2]. 

F „ = (-l)"+1/v (1) 
Lln = Ll-2(-\y. (2) 

Fm+n = FmLn-(-V) Fm_n. (3) 
^Fmn = FJ^,+FnLm. (4) 

If k is even, 3 \ k, and (a, Lk) = 1, then 

(±4aF2k + l\L2k) = - ($aFk±Lk\64a2+5). (5) 

If the period of {Fn} modulo Q is t and n = m (mod t), then Fn = Fm (mod Q). We will use 
this fact in our proofs for the following pairs: (t, Q) = (8, 3), (20, 5), (16, 7), (24, 9), (10, 11), 
(40, 41), (50, 101), (50, 151), and (100, 3001). 

It should be noted that we have given the least period t modulo Q in each of the above pairs; 
however, Fn^Fm (mod Q) if n = m (mod hi) for any integer h. 
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Finally, we comment that it is well known that Fn and Ln are even if and only if 31 n. 
Lemma 1: For all integers k and m, and g odd, 

F s [Eik+m ( m o d Lik\ i f S = 1 (mod 4), 
2kg+m [-FK^ (mod4,), i f g s 3 (mod4). 

i W / > B y ( 3 ) , 

^Ikg+m = ^Jfc(g-l)+mAfc ~ \ V ^fc(g-2)+w = ~^2fc(g-2)+m ( m o d L ^ ) ; 

clearly, 

^fe+w = -^*(g-2)+/w - +^(g-4)+m - ' *' = ^Fyt+m ( m o d Ẑ Jfc) , 

where the positive sign occurs if and only if g = 1 (mod 4). 

Lemma 2: If 31 *, then F2k+3 = 2 / ^ (mod L^). 

Proof: By (4), 
2 ^ + 3 = ̂ 4 + % * s ^2* • 4 (mod L^), 

implying the lemma, since L^ is odd. 

Lemma 3: If i^ is pronic, then n = 0 or ±3 (mod 8). 

Proof: Assume 4Fn +1 is a square. Then AFn +1 is a quadratic residue modulo 3 and mod-
ulo 7. However, 4Fn +1 is a quadratic nonresidue modulo 3 if n = 1, 2, or 7 (mod 8), and a non-
residue modulo 7 if ?? = 4 or 12 (mod 16). If n = 6 (mod 8), then w = 6, 14, or 22 (mod 24); but, 
for each of these w's, 4i^ +1 is a quadratic nonresidue modulo 9, establishing the lemma. 

3, PROOFS OF THE THEOREMS 

Theorem 1: If n is odd and w * ±3, then i^ is not pronic. 

Proof: Assume n is odd, n * ±3, and JF„ is pronic. By Lemma 3, n = ±3 (mod 8). First, we 
assume that n = 3 (mod 8). Then n = 3, 11, 19, 27, or 35 (mod 40); however, (4Fw + l |g) =-1 
for ( i n ,0 = (11,5), (19, 41), (27, 5), and (35, 11), implying » s 3 (mod 40). Then n = 3, 23, 43, 
63, or 83 (mod 100). Proceeding as before, we find that (4Fw + l | 0 = -l'for (wi,g) = (23,3001), 
(43, 101), (63, 151), and (83, 101). Hence, if « = 3 (mod 8), then w = 3 (mod 100). Let n = 
2-2"-52r + 3, u>\. Now, if w = 2*g + 3,3J*, and # is odd, then, by Lemmas 1 and 2, 

(4F, + 1|I^) = (±8F2,+1|4,). 
By (5), if k is even and 31 A:, then 

(±8FU +1 |4 , ) = -(\6Fk ± Lk |261) = -{\6Fk ± Lk |29). 

In the proof of Luo's Lemma 2 (see [2]), it is shown that this Jacobi symbol is -1 for 

k = 2u and g = 52r if u = 0 (mod 3), 
A: = 2M-52 and g = f if i# s 1 (mod 3), 
A: = 2M-5 and g = 5t ifw = 2(mod3). 
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Thus, Fn is not pronic if n = 3 (mod 8). 
Assume now that n s -3 (mod 8). By (1), Fn - F_n and, since - « s 3 (mod 8), 

(4F_„ + l |Zt t )=-l 
by the above proof. D 

Lemma 4: If u > 4, then 
(ty i > = (-1)" -21 (mod 69) and Z2„ = -1 (mod 69), 
(b) Fr5 s (-1)M+1 -21 (mod 69) and L^5 = -1 (mod 69). 

Proof: 4 = 3 , 4 = 7, 4 = 47, 4 6 = 2207 = - l (mod 69) and, using (2), it follows by 
induction that L u = -1 (mod 69) for u > 4, Hence, 

F2U=F24Z4Z,...Z2U_1^1.3.7.47-(-l)^(-l)M.21(mod69). 

Similarly, 4o> 4o> Z40, 4 O = 54,16,47, - 1 (mod 69), respectively, and (b) readily follows. D 

Proof of the Main Theorem: If n = 0 or ± 3, Fn is clearly the product of consecutive inte-
gers. Assume that n * 0, ±3, and Fn is pronic. By Lemma 3 and Theorem 1, n = 0 (mod 8); so 
» s 0 , 8; 16, 24, or 32 (mod 40). But (4Fm + 1\Q) = -1 for (/w,Q) = (8,11), (16, 41), (24, 5), or 
(32, 5), so n = 0 (mod 40). Let n = 2-2u-5t, w>2. By Lemma 1 and (5), ifn = 2kg, 3|&, k is 
even, and ̂  is odd, then 

f-(8F, + 4 |69), i f ^ l ( m o d 4 ) , 
[ - ( 8 4 - 4 | 6 9 ) , rf# = 3 (mod 4). 

Case 1: / s i (mod 4). Let 

A: = 2M and # = 5/ = 1 (mod 4), if u is odd, u * 3 or u = 2, 
& = 2"-5 and g = * = l (mod4), if w is even, u^2 oru = 3. 

If u = 2, -(8i^ + 4 |69 ) = -(31|69) = - l ; i f « = 3, -(8F* + 4 |69) = -(17|69) = - 1 ; if u>4 mdu 
is odd (A: = 2") or if w is even (k = 2U • 5), then, by Lemma 4, 

8 4 + 4 = 8(-21) + - l = -169 (mod69). 

Hence , - (84+4 |69) = -(-169|69) = - l . 

Case 2: t s 3 (mod 4). Let 
k = 2U and ^ = 5/ = 3 (mod 4), if w is even or u - 3, 
£ = 2M-5 and £ = r = 3 (mod4), ifz/isodd, w*3. 

If w = 2, - ( 8 4 - 4 | 6 9 ) = -(17|69) = - l ; i f i# = 3, - ( 8 4 - 4 | 6 9 ) = -(121|69) = - 1 ; if w>4 and 
2/ is odd (k = 2U • 5) or 1/ is even (& = 2"), then, by Lemma 4, 

8 4 - 4 = 8-21-(-l) s 169 (mod 69). 

Hence, - ( 8 4 - 4169) = -(169169) = - 1 . D 
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