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1. GENERALIZATIONS 

We consider finding a Binet formula for the continuous function f:dt—>% which has the 
property 

/(*)= I / (*-0 , (i) 
l</<Ar 

where 
• k is a given integer and k>\, 
• either f(0),..., f(k -1) are given initial values, 
• or / : [0, k) -> $ is a given continuous initial function where 

This generalizes the Fibonacci sequence in new ways. Instead of viewing the sequence as an 
automorphism on the integers, its domain becomes the reals. The Binet formula also allows the 
initial values to be arbitrary values, possibly complex ones. Instead of having k initial values for 
the function of order k, we also allow an initial function which is defined on the interval [0, k). 

When only k initial values are given, there can be many possible functions / . However, the 
following can be shown by induction. 

Lemma LI: Given an initial function,/is uniquely defined on 9t, and if 

l im/(x)= £ / ( x ) , 

then/is continuous. 
x~*k 0<x<fc-l 

2. RELATED WORK 

In 1961, Horadam wrote that generalizations of Fibonacci's sequence either involved changes 
to the Fibonacci recurrence or allowed its initial values to be changed or, possibly, a combination 
of these [10]. 

Since then, the main contributions to a general theory seem to involve generalizations of the 
Fibonacci recurrence [17], [20]: 

/(*)= X/(*-Q. (2) 
\<l<k 

When k = 3 and / (0 ) , / ( l ) , and / (2) are arbitrary constants, this is the recurrence of the gener-
alized Tribonacci sequence. The Tetranacci or Quadranacci sequence is similarly defined when 
A = 4. 
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Direct evaluation of equation (2) can have exponential complexity. Burstall and Darlington 
[2] gave a linear algorithm for computing Fibonacci numbers as an example of their program 
transformation methods: 

f(0)<=l 
f(l)<=l 
f (x + 2) <= u + v, where (u, v) = g(x) 
g(o)<=<w> 
g(x +1) <= <u + v, u), where (u, v) = g(x) 

This approach can, of course, be generalized by allowing different initial values and letting 
k>2. For example, if f(0) is defined to be 0 instead, we have that f(n) is the nth Fibonacci 
number. Given an efficient implementation of exponentiation, using the Binet formula 

F M-ffl 
Vs 

for the same task can have lower complexity. 
A similar formula, where k - 2 and the initial values are arbitrary, was given by Horadam 

[10]. A Binet formula for the recursive sequence of order k was given by Miles [13] for the 
special case f(x) = 09 where 0 < J C < £ - 2 and f(k-l) = l. Spickerman and Joyner [18] gave 
another solution for the special case / (0) = 1, and f(x) = 2x~l for \<x<k-l. Our approach 
subsumes these results as special cases. 

We have also derived a solution to equation (1), where an arbitrary initial function is speci-
fied. This does not seem to have been considered before. 

In the next section, we discuss properties of the characteristic equation, the coefficients of 
generalized Binet formulas, and solutions that use the initial values, and the initial function. When 
the initial values are given, we present two methods of solution: one uses Binet formulas and the 
other uses an exponential generating function and the Laplace Transform. We use the latter 
method to find solutions when 2 < k < 4. They are equivalent to those found with Binet formulas, 
but they are more complicated and do not involve complex roots. 

3. THE CHARACTERISTIC EQUATION 

We consider properties of the characteristic equation associated with Fibonacci recurrences 
of equation (1). These properties include its discriminant, location of roots, reducibility, and 
solvability in radicals. Several of the results here are used in later sections. 

Equation (1) is a homogeneous linear difference equation. Its characteristic equation* is 
given below: 

/ - z y = o . (3) 
0<l<k 

The form of the general solution of such difference equations depends on whether the roots 
of its characteristic equation are simple [12]. We define the characteristic function of order k to 

* See Liu [12], §3-2, for example. 
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Lemma 3.1: For every solution r of ck, 

Cj{r) + -

where 0 < j < k. 

Proof: This follows from the definition ofck. D 

Corollary 3.2: For every solution r of ck, 

cj(r)= X /- '. 
i</<Jt-y 

Theorem 3.3: The discriminant of the characteristic equation is 

(-i)" (k+iy+l-2(2kf 
(k-if 

when k > 1. 
<& Proof: Let the resultant of c^(y) and -^- be R(c,cf). The discriminant of the characteristic 

vA(Azl) equation is (-1) 2 i?(c, c') [11]. The resultant when k - 3 is 

/?(c,C) = 

1 
0 
3 
0 
0 

- 1 
1 

- 2 
3 
0 

- 1 
-1 
- 1 
- 2 

3 

-1 
-1 

0 
-1 
- 2 

0 
- 1 

0 
0 

- 1 

This can be simplified by partial Gaussian elimination. First, we interchange elements by moving 
element a,- • to element a2k_u2k_j, where \<i,j<2k-\. This does not change the sign of the 
determinant. In the example above, we obtain 

R(c,c') = 

- 1 - 2 3 0 0 
0 - 1 - 2 3 0 
0 0 - 1 - 2 3 

-1 - 1 - 1 1 0 
0 -1 -1 -1 1 

Subtracting row 1 from row 4 and row 2 from row 5 yields 

R(c,c') = 

If we then add row 2 to row 4 and row 3 to row 5, we obtain 

- 1 
0 
0 
0 
0 

- 2 
-1 

0 
1 
0 

3 
- 2 
- 1 
- 4 
- 1 

0 
3 

- 2 
1 

- 4 

0 
0 
3 
0 
1 

i?(c,c') = 

- 1 - 2 3 0 0 
0 - 1 - 2 3 0 
0 0 - 1 - 2 3 
0 0 - 6 4 0 
0 0 0 - 6 4 
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In general, the last two row operations above can be defined as the replacement of element akHj 
by ak+ij - atj + ai+lJ, where 1 < i < k -1 and 1 < j < 2k -1. Rows k +1 to 2k - 1 in these deter-
minants have the form 

0 ••• 0 -2k k + 1 0 ••• 0, 

where row l\k + l<l<2k-l has 0 in columns 1 to / - 2 . By induction on k, we can show that, 
for all k >1, 

{2kf 
R(c,c) = (-iy -+ £ (/ + l)(2*)/(* + l)*-1-/ 

^ 0<i<k-2 

The following identity can be used to simplify the summation in this expression: 

£ {a + ld)xi = a-(.a + (n-\)d)x" +dx(\-x^) 
0<l<n-l 

With x = -j^ and « = A: - 1 , we obtain 

i?(c,C')=(-iy 
(k + l)k+1-2(2kf 

(k-lf 

when ^ > 1, and the result follows. D 

Miles [13] and Miller [14] have shown that the characteristic equation has simple roots. 
Corollary 3.4 below shows this by different means. Its proof will be used in the proof of Theorem 
3.9 below. 

Corollary 3.4: The characteristic equation has simple roots. 
Proof: It suffices to show that R(c, c')^0. The resultant equals -5 when k - 2, and 44 

when k = 3. It could only be zero if (k + l)k+l = 2(2k)k, which occurs if (k +1) log2 (k +1) - 1 -
k-klog2 k - 0. Now log2(& +1)-log2 k < 0.6 when k > 2, so that 

(* + l)log2(^ + l)- l-^-*log2^<log2A:-0.4(i t + l). 

When 1 < k < 4, log2 k - 0A(k +1) < 0. The derivative of log2 k - ®A{k +1) is negative when 
k >4. Thus, (k +1)log2(£ + l)-l-k-klog2 & <0 and R(c,c!) ^ 0 when k > 1, as required. • 

We call the k roots of equation (3), rl9..., rk. 

Corollary 3.5 The general solution to equation (1) when x is an integer has the form 

/(*)= I.CW, (4) 
1<7<& 

where the Q are constant coefficients. 
To find a solution to equation (1), we need to find a version of this summation where x can 

be a real number. 
The following lemma identifies the locations and limits of the roots of the characteristic equa-

tion more precisely than previous results by Miles [13] and Miller [14]. 
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Lemma 3.6: The characteristic equation yk - H0<i<k yl - 0 has one positive real root in the 
interval (1,2). This root approaches 2 as A; approaches infinity, and it is greater than 2(1 -2~k). 

It has one negative real root in the interval (-1,0) when k is even. This root and each com-
plex root r has modulus Tk < \r |< 1. 

Proof: By Descartes' Rule of Signs [6], the characteristic equation has one variation, and so 
has at most one positive real root. There must be just one positive root because the characteristic 
function is -k +1 when y - 1, and 1 when y = 2. Another proof of this follows immediately from 
Polya and Szego ([15], Vol. I, Pt. Ill, Prob. 16). The characteristic function ck+l is 

v y-1) 
At y = r,this equals - 1 . By Lemma 3.6, there is only one positive root, so that positive root of 
ck+l is greater than r. Hence, r is always greater than y when k > 2, so that 

2 

is always positive. The root r must be less than 2 because the characteristic equation always 
equals 1 when x = 2. Therefore, r lies between 2(1-2~*) and 2. As k approaches infinity, r 
approaches 2. 

If we replace y by —x, the characteristic function is -xk ~~^ when k is odd. This is 
negative when x > 0, and so the characteristic equation does not have any negative real roots. 

When k is even, replacing y by —x in the characteristic function gives xk + ^ f • This is 
positive when x > 1, so there is at least one negative root of the characteristic equation between 
-1 and 0. The derivative of the preceding function is 

kxk+l + (3k -l)xk +2kxk~l + 1 
(x + 1)2 

which is positive when x > 0. Therefore, xk H-2^1 is strictly increasing when x > 0. It follows 
that there is only one negative root of the characteristic equation. 

We now consider the complex roots of the characteristic equation. From Miles [13] and 
Miller [14], each of them has modulus less than one. For every root r, \r\ = \r-2\~l/k. In the 
region where |z |<l , we have l < | z - 2 | < 3 , and so each of the complex roots and the negative 
real root satisfies Tllk < \r \ < 1. D 

Corollary 3.7: l i m x ^ 0 0
J ^ i = ri a n d l i m*-»oo^ = Q-

Proof: This follows immediately from Corollary 3.5, and that \rf \< 1 for / :2 < / < k. D 

Corollary 3.8: ck is irreducible over the rationals where k > 1. 

Proof: By Gauss's lemma, the irreducibility of ck over the rationals is equivalent to its 
irreducibility over the integers [11]. If ck were reducible, the roots of one of its factors would all 
have moduli that are strictly less than 1. The product of these roots cannot be an integer. This 
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leads to a contradiction because the modulus of the product of these roots must equal the 
modulus of the constant term of this factor.* • 

We now give a series that can be used to evaluate the positive real root of the characteristic 
equation. 

Theorem 3.9: Let 2(1 - sk) be the positive root of the characteristic equation. Then 

7>1 V 

(k + l)i-2) 1 

Proof: We have 

=1 (* + !)/+ (*-!)' 

i2(k+l)i ' 

1 
(1 + 1)2' (*+iX/+i) 

Define 

This is equivalent to the previous expression when z = (j)*+1. We have 

/>o v 
Identity 29 on page 713 of Prudnikov, Brychkov, and Marichev [16] states* 

I T(kv+M) „*_ r_ 
•^kWikv-k + fi) (l-v)y + v' 

where 

. _ J - 1 (v-iy x = - and \x\-
yv 

If we rename k by /, and then let v - k +1 , ju = k, x = z, and y = x, we have 

&^(z) = xk 

dz k + l-kx' 
where 

z = -
x-1 , provided that \z\< 

(*+i> it+i 

(5) 

(6) 

When z = (̂ -f+1
? this simplifies to 2(2kf - (k +1)*+1 > 0. It is remarkable that this is the 

same condition as in the proof of Corollary 3.4, so that it always holds when k>l. 

* David Boyd told me of this proof. It is known from the theory of Pisot numbers [1]. 
** Prudnikov, Brychkov, and Marichev [16] seem to refer to Gould [9] for this result. Gould gives a more 
restricted form where combinations rather than Gamma functions are used (Identity 1.120 on p. 15). Gould, in 
turn, apparently refers to the 1925 German edition of Polya and Szego [15]. The identity appears as a solution to 
problem 216 of Part III of Volume I of the 1972 English translation of that work [15]. The convergence condition 
(6) is discussed by Gould [8]. 
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N o w 
dz _ k +1 - he 
dx~ xk+2 

so that 
dsk{z) dz _ 1 

dz dx x2 ' 
We have 

Jo dz Ji x2 ' 
where 

xo~1 _ / n w 
x0 

Since — = k+l+^°, the value of z as a function of x is increasing when 1 < x < ̂ . In this interval, z 
increases from 0 to **k+1. We have shown that condition (6) holds when z = {j)k+l. This 
implies that < x0 < ̂ , and for all x: 1 < x < x0, condition (6) is satisfied. 

Therefore, ^ = l - ~ and the positive root of the characteristic equation is ^ . To check 
this, we can write the characteristic equation as 

/ ( y - 2 ) + l 

which holds when yk (y - 2) +1 = 0 and y * 1. On substitution of }> = -Jj-, we obtain 

2 \ t + i 

^oy 
- 2 

\xoJ 

k 

+ 1 = 0. 

This is equivalent to ^ r = (y f+1, as required. • 
x0 

Remark 3.10: Condition (6) and the one for equation (5) [16] should be strengthened. We have 
used a value x0:1 < x0 < ̂  such that - ^ = (j)k+l, but we could have chosen x0 = 2 instead. This 

XQ 

value also satisfies the condition, but in general, 
xk 2k 

k + l-kx0 \-k 

3.1 Solvability in Radicals 

We now consider the roots of specific characteristic equations. When k = 2, we have 
r1 = i±^- and r 2 = - ^ - , o r -r~l. Approximate values of rxmdr2 are 1.618033988749895 and 
-0.618033988749895, respectively. 

When k - 3, we let the real root of equation (3) be 

_ 1 + (19 - 3 V33 )1/3 +(19 + 3 -J33)l/3 

3 
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This was found by using "Cardan's Method" of 1545, due to Ferro and Tartaglia, for the solution 
of the general cubic equation (see [6], [7]). This constant rx will be used to find a solution to 
equation (1) above. The complex solutions are -cop - co2q + j and -a)2p -coq + ̂ y where 

- 1 + V3/ 2 - 1 - V 3 / -(19-3V33)173 -(19 + 3V33)173 

co = , col = -^—, p = — r^—L—9 q = — ^—l—• 
2 2 ^ 3 ' * 3 

An approximate value of rx is 1.83928675521416. The approximate values of the complex 
roots are -0.419643377607081 + 0.606290729207199/. 

Similarly, when k = 4 , the two real solutions of (3) are given by 

where 

i 1 2 . 2 i /3 rt -y i 4 8 

The complex roots are given by 

These were found by Ferrari's Solution to the general quartic (see [6], [7]). Approximations 
of the real solutions that we call rx and r2 are 1.92756197548293 and -0.77480411321543, 
respectively. The approximate values of the complex solutions are -0.07637893113374541 
0.814703647170387/. 

Lemma 3.11: There are no solutions in radicals to the characteristic equation when 5 < k < 11. 

Proof: The Galois group of the characteristic equation is Sk when 1 < k < 11. These groups 
were found by using Magma* [3], and they are not soluble [11]. D 

We conjecture that the Galois group of the characteristic equation is also Sk when k > 11. In 
general, computing the Galois group of a polynomial currently seems to be intractable when 
k > 12 (see [19]). 

4. THE COEFFICIENTS 

We consider the problem of finding the coefficients C; in the equation 

/(*)= l o r , (7) 
\<i<k 

where / (0 ) , . . . , f(k -1) are given. This is the problem of finding a general solution of a homo-
geneous linear difference equation whose characteristic equation has simple roots. 

* These computations were done by John Cannon. Robert Low also told me independently that Maple [4] gave the 
same answers where 5 < k < 8. Values of & outside this range were not used. 
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We use the elementary symmetric polynomials ([7]? [11]) of l defined over tVi, . . . , ^_ i} 5 

where 1 < i < k -1, and define Q-Q"1 = 1. The coefficient Ct is then given by the function 

i(-iy/(*-i-yX_l 

h(yi,-,yk) = °'J<k -j-r, c ; 

l<j<k 

(8) 

where yk - rx and yv ..., j ^ are assigned, respectively, to the other A: - 1 roots of equation (3) in 
any order. Equation (8) can be verified by induction on k. The formula was derived by Gaussian 
elimination and back substitution on systems such as 

1 1 1] 
h r3 
r2 '3 J 

[Ql 
\c2 

LQJ 
= 

r/(o)i 
/(i) 

L/(2)J 
when k = 3. More generally, the leftmost kxk matrix has elements a,. . - r '"1 . The determinant 
of this matrix is the Vandermonde determinant. Lang [11] in Exercise 33(c) of Chapter V dis-
cusses how this determinant can be used to find the coefficients, but no explicit formula is given. 

Example 4.1: When k - 4, we have 

fix^Ctf + Ctf+Cff + Ctf, 

where the function h(yx, y2, y3, y4) is 

/(3) - (ft + y2 + y3)f(2) + (yy2 + y2y3 + y^fjl) - yly2y3f(0) 

Thus, f(x) is 

Kb, r3> r4?
 riX* + %> r3, r4, h)ri + %> r29 r4, r3)r3* +/i(r1? r2, r3, r4)r4

x. 

Some special cases have appeared in the literature. Horadam [10] presented a Binet formula 
called equation (8), which is equivalent to the one below, where k = 29 / (0) = q, and/(l) = p: 

f(x) = -^(2{p-qr2yi
x-2{p-qrl)r2

x). 

From equation (8), we find 
f(i)-yif(Q) 

h(yhy2) = -
yi-y\ 

so that 

i " " 7c a 2 ~ /7 

in agreement with Horadam's result. 
Miles [13] discussed the special case in which f(x) = 0, where 0 < x < k - 2 and / ( £ -1) = 1. 

Equation (7) becomes 
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**-*)=TI(^> 
\<j<k 

in agreement with his equation (2 "). 
Spickerman and Joyner [18] considered the special case in which f(0) = 1 and f(x) = 2*-1, 

for 1 < x < k -1. Their solution is 
rk+\ _fk 

Ci~rf-{k\\) (9) 

This again is equivalent to a particular solution using equation (8). 

Theorem 4.2: When / (0) = 1 and f(x) = 2x~l, for l<x<k-l, equation (9) is equivalent to 
equation (8). 

Proof: The numerator of equation (8) with Spickerman and Joyner's initial values is equal to 
y( 2=7 + 7:). This follows from the observation that Tl^^^ = (-l)*-1, ck(2) = 1, and 

^ = ̂ +2X(-iy/(*-W>ri. 
Z ri ri 0<j<k 

The expression for the numerator simplifies to yk~l by use of the identity rk(2 -r) = 1, where r is 
any root of the characteristic equation. 

The denominator of equation (8) can be expressed in terms of rt by using the property that, 
for this problem, ak = (-l)y~\ where 1 < j < k [11]. By induction on k, we can show that 

no'*- .v , )=(*- i )^~ , + - -1 M-
\<j<k yk \<l<k-2 

The summation can be removed by use of the identity 

^ , i^ i a-(a + (n-l)d)xn dx(l-xn-1) 
0</<7?-l * ~ X 0 ~~ X) 

to give 

I</<A: >* x yk \i~yk) 

After some algebraic simplifications involving uses of the identity rk+l-rk -rk - 1 , the ex-
pression for the denominator can be simplified to 

y[-i ' 
Hence, in this case, equation (8) is equivalent to 

or-*)' 
Equation (9) can be derived from this by using the above identity, as required. D 
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The formula for the coefficient Q of a generalized Fibonacci recurrence can be expressed 
merely in terms of the initial values and the root rt of the characteristic equation. 

Corollary 4.3: In the case of the recurrence in equation (1), equation (8) is equivalent to 

Cv£-l)I/(*-W)<y(jfc) 

y^iy^-k) 
Proof: This follows from the proof of Theorem 4.2 and by induction on k to show that 

( \ 
\yi-H A \ 

where 0<j<k. D 

Since the coefficient Q only depends on the root rz and the k initial values, we write h(y) 
instead of h(yly..., yk). From Corollaries 3.2 and 4.3, we obtain 

<1 = (-iy I y'u (io) 
\<i<k-j 

and 
l / -«E/(»- i - ; ) S y-

m~ ^ v „ _ k ) ' ^ ' • (ID 
Lemma 4.4: Suppose that the k initial values of/* are real numbers. When k is even, 

f(x)=h(ri)rx+h(r2)rx + X 2 ^ * cos(0,. +^x), 

where v7. and w,. are real constants, and -n < 0i7 Y\-n- When k is odd, 

/(x)=/i(r1)r1
x+ X 2vz.<cos(^.+^)-

Proof: When A: is even, from Lemma 3.6, let rt be the positive real root of the characteristic 
equation and r2 be the negative real root. The k-2 complex roots can be paired as conjugates. 
From Corollary 4.3, if r and r are such a pair, then h(r) mdh(F) are also conjugates. From equa-
tion (4), it follows that f(x) can be expressed using the terms h(j\)r* andh(r2)r2 , and (k-2)/2 
terms of the form h(r)rx +h(r)rx. 

Suppose that h(r) = ll+ il2 and r = l3+il4. We can show that 

h(r)rx + h(r)rx = 2vwx cos($ + ^ ) , 

where 
v = ̂ J l^+l2 and w = yl%+%. 

Let sgn(x) equal 1 if x>0 , and equal -1 if x<0 . We have 0- sgn(/2)arccos(/1/v) and 
Y = sgn(/4)arccos(/3 / w). We assume that, for all x : - l < x < 1, 0 < arccosx < n. The case when 
k is odd is similar. D 
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5. SOLUTIONS 

Substituting expressions for the coefficients Q from equation (8) into equation (4) gives the 
unique general solution to equation (1) when the domain of/is restricted to the integers and the k 
initial values are known. This has been the usual application of Binet formulas. 

Our solution seems to be more general than those considered previously (see [10], [13], [18], 
and [20]). It can also be used to find the general solutions of all homogeneous linear difference 
equations whose characteristic equations have simple roots. 

The new generalization of the Fibonacci sequence we present defines the domain off to be 
the reals. This introduces some additional questions. We first consider the solution of equation 
(1) when k initial values are given, and then where there is a given initial function. 

6. USING THE INITIAL VALUES 

6.1 Direct Solutions 

Direct solutions use equation (7), f(x) = Z^-^ Qrx. It is not difficult to show that, if x edt 
rather than the integers, then/is a solution to equation (1), as required. 

The coefficients Q can be computed following Corollary 4.3 or equation (11) by using the k 
initial values and k roots rt of the characteristic equation. 

From Lemma 4.4 we have that, when k is odd, and the initial values are real, then/is a real-
valued function for all x edi. When k is even and the initial values are real, the image off can be 
complex when x is not an integer. This arises from the term r2 because r2 < 0. This term can be 
written (cos(^xr)+/' sin(;zx))(-r2)x. We can show that the real part of/is 

Kr\)r\ +Kri) oos(nx)(-r2)x + ]T 2vtwf cos(<97 + ytx). 
i</<f-i 

The imaginary part of/is A(r2)sin(/zx)(-r2)*. The real and imaginary parts off individually satisfy 
equation (1). The real part has the same initial values as/, but the imaginary part is zero when x is 
an integer. 

More generally, when k is even, we can replace h(r2)r2 with h(r2)m(x)(-r2)x, where m is any 
continuous function that satisfies m(x + \) = -m(x) for all x edi, and m{x) = (-l)x when x is an 
integer. This family of solutions satisfies equation (1). 

6.2 Laplace Transform Method 

Another approach we use for finding solutions to equation (1) is based on the exponential 
generating function 

G(x) = ^ ^ - , (12) 

where the function/is a solution to equation (1) for a given k, where k > 1. First, we solve the 
differential equation 

#*>(*)= £ G « ( * ) , (13) 
0<i<k 
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where G(0) = /(0), G(1)(0) = /(I), . . . , G^-^O) = /(it -1) . This is done by means of the Laplace 
Transform [5]. 

We then use this solution to find an expression for G(w)(0), where n is a nonnegative integer. 
Finally, we replace the variable n by a variable x eCt, and find / (x ) = G(x)(0). 

6.2,1 Fibonacci Function 

We apply the method of Section 6.2 in the case k = 2. The Laplace Transform of G(2)(x) = 
G(1)(x) + G(x) yields 

)> + / ( ! ) - / ( 0 ) _ ^ , K2 
SI X -

-s-\ s-r, s-r, 
The constants Ky and K2 can be found by solving the following system: 

1 
-r, -r, 

/(0) 
/ ( l ) - / (0 ) 

This system is equivalent to that discussed in Section 4 above when k = 2. The solution is 
^ = 7(0) -^ , 
K = / ( l ) - / ( 0 ) + r 2 / ( 0 ) | 

r, -r, 
Applying the inverse Laplace transform yields the same result as the direct method: 

/ ( * ) = (/(i) - f(oy2yl
x - (/(i) - /(QMK 

A special case occurs when /(0) = 2 and / ( I ) = 1. The Xth Lucas number Lx equals f(x) 
when x is an integer. We call this function L(x): L(x) - r* + r2*. If we call F(x) the solution 
to equation (1), where / (0) = 0 and /(1) = 1, it is not difficult to show that Z,(x) = F(x -1)+ 
F(x + 1), r^L(jc)+fF(;c)

? and (-1)' = *<*>-f*<*> for all x efld. 

6,2,2 Tribonacci Function 
The Laplace Transform of equation (13) when k - 3 is 

53/(0) + ( / ( l ) - / ( 0 ) > + / ( 2 ) - / ( l ) - / ( 0 ) 

= ^ + - K2s + K3 

The constants K^K^, and K3 can be found by solving the following system: 

/ (0) 
/0)-/(0) 

/ ( 2 ) - / ( l ) - / ( 0 ) 

1 
r . - l 
_l/rt 

1 
- 1 
0 

o] 
1 

- r J 
ixi \K2 

W 
= 

We hsive 
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* i 
/(0) / ( l ) | / (2 ) 

1(1-1X3^ + 1) 3r1 + l (ri-l)(3r1 + l ) ' 

K2=f(0)-Ku 

K1-r1(f(2)-f(l)-f(0)) 
K _ _̂  _ 

Hence 

„ * , 
x = • 

^HV)) * 3 - ^ ) 
j - r , 1 HwfcMV)2) hm^-m2) 

Applying the inverse Laplace Transform gives 

G(x) = K^ + K 2 e ^ c o s ^ + ^ ^ ^ s i n ^ ? f x . 

We now use the observation that the /2th derivative of ^,JC cos(&2x) at x = 0, where ^ and £2 

are constants, is lncos(dn), where l-^kl+k\ and 0= sgn(A2)arccos(^1//). Similarly, the wth 

derivative of ek]X sin(&2x) at x = 0 is ln $m(0ri). We obtain 

f(x) = Ktf + Kfr-x'1 cos(0x)+/i -x/2 sin(0x). (14) 

The angle 6 is arccos(-^-^). We can verify by induction on x that equation (14) is a solu-
tion when k = 3, that Cx=Kl9 and that this is the same function as that found by the direct 
method. It is interesting to note that, unlike the direct one, this solution does not use the complex 
roots. 

6,23 Tetranacci Function 

We shall use the method of solution of Section 6.2 when k = 4. For brevity, we define 
K = f(0), Vi=fV)-f<P), V2=f(2)-f(l)-/(0), and F3 = / ( 3 ) - / ( 2 ) - / ( l ) - / ( 0 ) . The 
Laplace Transform of (13) in this case is 

x = 
_V0si-hVl$2 + V2$ + V3 

'-J-J-s-l 
This is equivalent to 

x = 
V0s3+Vls2+V2s + V3 

(s-rl)(s~r2)(/ + (r1+r2~l)s-^-rl
2-i-r2

2~-rl--r2+rlr2-l)' 

We have 
A.1 iv» 

x - L_ + 2_ + _ 
K3s + K4 

s-rx s~r2 s2 +(rx+r2-\)s + ri +r2 -rx-r2 +ff2 - 1 ? 

where Kl9 K2, K3, and K4 are constants. They can be found by solving the following system: 
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1 
1-1 

K-h-\ 
l/r, 

1 
r 2 - l 

r2
2-r2-\ 
\lr2 

1 
-r , - r 2 

V2 
0 

0 1 
1 

-h-h\ 
rih J 

1*' k2 k 
1*4 

fol 
F' 
*V 

l̂ J 
After finding the constants, and continuing with the other steps of the method of solution, we 

obtain the following solution which can be verified by induction: 

f(x) = Kf* + K2r2
x + yx/2(K3 cos(ftc) + K5 sin(ftc)), 

where 
y = rl

2-rl+r2
2-r2+rlr2-l, 

6 = arccos r=^-5 

^ = / ( 0 ) - ^ - ^ 3 > 

^ = / ( l ) - r 1 / ( 0 ) - A 4 - ( l - 2 r 1 - r 2 ) ^ 3 

K = /(2)+r1r2/(0) - fr +r2)/(l) - (1 - 2rt - 2r2)K4 
3 r,2 - 2/j + r2 - 2r2 + 4rf2 + 2 

/(3) - (l -^-(n+r2)K7)f(l) - (1 + JC,)/(2) - K6 
K4 = 

K^K" 

V a + ^ T - O - ^ i - 2 ^ ) ^ 
'n+azT 
> 2 

£, 

* 6 = 

f 1 1 "l 

JC7 = - \-2rx- 2r2 
Of + r2

2 + 4r/2 - 2>i - 2r2 + 2)r{r2 ' 

Lemma 6.1: f(x) is symmetric in /j and r2. 

Proof: It is easy to check that yx/2(K3cos(0x) + K5sm(0x)) is symmetric in rx and r2 be-
cause j , #, and K3 to K7 are symmetric. Now ^ is equal to 

f(l)-r2f(0)-K4-(l-2r2-ri)K3 

This is Z"2 with rx and r2 interchanged. Hence, K/* + JC/^ is also symmetric. D 

This solution is also extensionally equivalent to the one found by the direct method, and 
Q = Kx, and C2 = K2. Again we see that it is not necessary to find the complex roots. 

Solutions similar to this one, and the ones in Sections 6.2.2 and 6.2.1 above have appeared 
previously (see [21], [22], [23]) but without the preceding derivations. The method of solution 
described in Section 6.2 above can also be applied when the roots are expressed numerically. 
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7. USING THE INITIAL FUNCTION 

If k > 2, then given an initial function /whose domain is the interval [0, k), we can compute 
every value of the A:-step function f(x) where x e9t. To do this, we define a function Ft. This is 
a A:111-order function on the integers that satisfies equation (1) and whose initial values are 

fO if**/, 
[I nx = i, 

where 0 < /, x < k -1. In general, 

/(/+*)= E/(/+*)m (15) 
0</<Jfc 

where / is an integer, x = l + s, and s e[0,1). We can show by induction that 

F,(I)= T,F0(l-j). (16) 
0<j<i 

Equation (15) can thus be written as 

/( / + *)= I / O + ^ I ^ - y ) - (17) 
0<i<k 0<j<i 

Equation (17) shows that/can be defined on the real numbers in terms of the initial function 
and the A>step function F0 whose domain is the integers. It is not unique. For example, from 
equation (16) we have, for a fixed k, that 

0<;St-l 

i.e., Fk_i(I-1) = F0(/). It follows that 

f(I + e)= X /(/ + *) X FUl-J-i)- (18) 
0</<it 0<;<z 

Now, from equation (11), the coefficients of equation (7), for Fk_l9 are given by 

On substitution into equation (18), we have 
n<ivz- n</<7 i<v<t 'u 1 0<i<k 0<j<i \<v<k 

where the rv are the roots of the characteristic equation. 
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