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1. INTRODUCTION 

The study of Fibonacci sequences in groups began with the earlier work of Wall [7], where 
the ordinary Fibonacci sequences in cyclic groups were investigated. Another early contributor to 
this field was Vinson , who was particularly interested in ranks of apparition in ordinary Fibonacci 
sequences [6]. In the mid eighties, Wilcox extended the problem to abelian groups [8]. Campbell, 
Doostie, and Robertson expanded the theory to some finite simple groups [2]. One of the latest 
works in this area is [1], where it is shown that the lengths of ordinary 2-step Fibonacci sequences 
are equal to the length of the 2-step Fibonacci recurrences in finite nilpotent groups of nilpotency 
class 4 and exponent a prime number/?. The theory has been generalized in [3] to the ordinary 
3-step Fibonacci sequences in finite nilpotent groups of nilpotency class 2 and exponent/?. 

Definition LI: Let H<G, K< G, and K<H. If HIK is contained in the center of GIK, then 
H IK is called a central factor of G. A group G is called nilpotent if it has finite series of normal 
subgroups G = G0 > Gx > • • • > Gr = 1 such that Gt_x IG, is a central factor of G for each / = 1, 2, 
..., r. The smallest possible r is call the nilpotency class of G. 

Further details about nilpotent groups and related topics can be found in [4]. 
Let G be a free nilpotent group of nilpotency class 2 and exponent p. G has a presentation 

G = (x, y9 z: xp = 1, yp - 1, zp = 1, z - (y, x) = y~lx~lyx). Suppose that we have integers n and m 
and a recurrence relation in this group given by 

We assume that p does not divide n. Then we get a definition of a 2-step general standard Fibo-
nacci sequence which will be (0,1, m,n + m2,...) in Z/pZ. Ifp were permitted to divide n, then 
the sequence ultimately would be periodic, but would never return to the consecutive pair 0,1. 
The length of the standard sequence is k, which we call the Wall number of the sequence, some-
times called the fundamental period of that sequence. 

Each element in the group G can be represented uniquely as xaybzc, where a, b, c G Z /pZ. 
The group relations give us a law of composition of standard forms 

xaybzc-xa'yb'zc' = xa"yb"zc\ 

where a", b", and c" are given by the following explicit formulas. 
We have a" = a + a', b" = b+b', and c" = c + c' + a'b. These product laws are discussed in 

more detail in [1]. In order to study this recurrence, we need a closed formula to describe how to 
take the next term of the sequence. Let {xay\b zc)n and (xa'yb'zc')m be two elements in G. The 
relevant formulas are 
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{xaybzc)n{xa'yb'zc')m = xa"yb"zc", 
where 

a" = na + ma', 

and 

c" = nc+mcf +mnafb+(n~^n ah+t™'1)™ a'b'. 
2 2 

2. THE MAIN RESULT AND PROOF 

Let us use vector notation to calculate the sequence. We put (l,0,G) = ($_l,r0,t0) which 
corresponds to x, and (0,1,0) = (% r1? tx) which corresponds to y. We demonstrate more vectors 
using the above product formula for c" as 

(n, m, 0)•= ( î, r2, t2) and mn, m2 + n, mn2 + yl \mn \ = (s2, r3, t3). 

We obtain two sequences (/;) and (tt) via our recurrence. Notice that we have sf - nrf for each 
integer /. By induction onj, the 7th term of the third component of our sequence of vectors is 

h = mnl X 7>-/-ir/2 + (2 f Z ry-/-iW-i +1 J r S ryw-iW+i • 

Let us denote the period of the general Fibonacci sequence in the group G by k(G). 

Theorem 2.1: Let p > 3 be a prime number. Then, if G is a nontrivial finite p-group of exponent 
p and nilpotency class 2, &(G) = k. There are four assumptions that we will insert: 
a) ?2 # 0 (mod/?), 
6) m + n-1^0 (modp), 
c) n2~m3-n-3mn#0 (mod/?), 
rfj 3w(m2 + n) # 0 (mod p). 

Proof: Let 
&-1 / \ k-i / \ &-i 

'* = ™l2Zr*-/-i'/2 + 2 wZ/*-/-iW-i + ^ pS'iw-iW+i. 
/=o V / 1=0 ^ ' 1=0 

where m,neZ/pZ, /? > 2. In order to show &(G) = k, we must check that ^ = ^+1 = 0. The 
range of all the following sums is the same as above. Since ri+l = mrt + wj^j, we can recast the last 
sum to obtain 

We separate this sum to the two parts, 

O^mJ+fymn^r^ and 02 = ̂ ] » + Q W
2 j X ^ - « - , -

We can pull out factors without difficulty. We put 
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ll = mn2+ 2 \mn and l2 = L p + L p 2 

and then set 
^i = 11^-1-1^ a n d ^2 = Zli-/-iW-i-

Now we have 0X = Z^ and #2 = /2^2, and we are in a position to show that </>x = 0 and <f>2 = 0. 
First, we prove that 

Now let us show that 

' - . = < - » ' * # ' 
If a and f5 are the roots of x2 -mx-n = 0, then aP = -n and a+P = m. We have, from the 
Binet formula, 

a7-/?7
 A or'-p-' 

ri= p a n d r-i= a -

a-p a-fi 
We multiply r_7 by (a/?)7 to see that 

r_, = (-i)'+1^J/;, (l) 
and also we have 

1+rt-i = 12-(-")'-1- (2) 
This formula was known to Somer [5]. By using r_(z+1) = (-1)7(^)/+1 ri+l and (2), we obtain 

Z^+iyK-i=Z(-^]TV+^Z'!-
We will prove that S/;= 0. Since our recurrence relation is rt =rnri_l+nri_2, we deduce that 
ET; = wE^_j + «I/;_2. Replace / - 1 by i in the first sum and / - 2 by /" in the second sum on the 
right side to yield' 

(!» + / ! -1)5>,=0. (3) 

Thus, Z^; = 0 unless m +w-1 is congruent to 0 modulo/?. The next step is to show that 

so we will be half way through the proof. From the recurrence relation, 

We expand this equation to obtain 
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Replacing / - 1 by i in the first, second, and third sums, and / - 2 by i in the last sum on the right 
side, we obtain 

(4) 

Now we have 

[" - v -!] z ( - ^ p'3+3w"Z (-iy+(£f VxK+«!-i)=o. 
Using mrt + wj.i = /}+1 and •̂+1/;_1 = /j2 - (-n)1'1 = J-2 + (-1)'(w)1"1, we obtain 

(»-^-i)Z(-iy(^p-3»Z(-iy(0>-3»z^=a 
The last sum is zero by (3). Then we have 

^-^-i-3")z(-iy^TV=o.. (5) 
We multiply (5) by n to see that 

in1 - m3 - n- 3^ )X("0 f -TV = 0. 
Finally, we have 

Z(-D'(0+V = O, (6) 
unless n2-m3-n-3mn is congruent to 0 modulo p. We deduce that $2

 = ®- Hence, we have 
completed the first part of the proof. Now we prove that the other part of tk is 0. By (1), write 

<*.=Z(-iy(^J+1W-
By (4), we have 

(„2 _nP_ w )£ (-iy (I)[+V+3wV]£ ( - i ^ i j[+V/-i 

+3/W»3X(-iy+1^)+2^i=o. 

From (6), we have our first linear equation: 

a ^ S C - 1 ^ } VM+3««2ZH)'(^J V i = o- (7) 
Therefore, from the recurrence relation nrt = ri+2 -mri+l and (6), we get 

v+i i / 1 v+i LH)(0*V4Z<-»^)\ / + 2 - ^ + l ) =0. 
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2 
ri+2ri+l 

We exploit this equation to obtain 

Replace i + 2 by / in the first, second, and third sums and / +1 by / in the last sum on the left side 
to see that 

-£l<-ir^)V=o. 
The first and last sums vanish by (6). We multiply the equation by n to obtain a second linear 
equation 

-awSC-iy^J V*-i+3^S(-i)(^)+1^-i = o. (8) 
Hence, from the linear equations (7) and (8), 

X(-iy(£j+V>j-i=o (9) 
and 

I ( - i ) ' ( ^ ) V i = o, (io) 

unless 3mn(m2 + ri) is congruent to 0 modulo p. Replacing i -1 by / in (10), 

3w(iif2+ii)X(-l)'^J\i^ = 0. 

So we have finished the second part of the proof. Therefore, we have tk - 0. 

Similarly, 

tM = mn2Y^r^r? + (" jn^r^r^^ + ( 7 )w2>*wr,#;+1. 

From (1), we have 

4+1 = ™ 2 £ ( - l ) ' + ( ^ 

This is the same as 

4J.I = mn2 &-.r(i]^@|'(-.r'(i)'A,+@»|1(-r(ijA. 

+ ™„'(-l)*«[iĴ +Q«(-l)»«(lJriV1+Qn<-l)**(;J'i,'i«. 
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The last three terms are zero by the fact that rk = 0 because the period of the sequence ri is k. 
The first three sums are zero by exactly the same argument as in the proof of tk = 0. Hence, 
tk+l = 0. To be more explicit, the same restrictions are still valid for tk+l = 0. Thus, the proof of 
Theorem 2.1 is completed. 

This result has an obvious interpretation in terms of quotients of groups with presentations 
similar to those of Fibonacci groups, which is 

F(2, r, m, ri) = (xl,x2,...,xr: x^x^1 = 1, x2%%~ * = I • • •, ̂ V ^ f 1 = 1, x»x?jql = 1>. 
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