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1. INTRODUCTION 

A directed graph, or digraph, is a finite set of vertices together with directed edges. A closed 
trail of a digraph in which no vertices are repeated is a cycle. A tree is an acyclic connected 
digraph and a forest is an acyclic graph (thus a forest is made up of trees) [1J. 

Starting with the elements of Zw as our set of vertices, we can create a digraph associated to 
any function/modulo n by having an edge from vertex bx to vertex b2 if f(J^) = b2 (mod ri). This 
digraph reflects properties of Z„ and/ 

Digraphs arising when f(x) = x2 have been studied in [2] and [5]. More recently, digraphs 
arising from f(x) = xk and n a prime have been studied in [4]. In this article we study digraphs 
arising from f(x) = xk and arbitrary n GM. 

Ifn = 2a UZi P? with a, > 1, a > 0, define 

(0 ifa = <U • [0 i f a<3 , 
1 [1 i fa>2, 2 [1 i fa>3, 

and 
L = lcm(2<\ 2S*~2\ pr'iP, ~ 1), .:,l£-lipm -1))-

We use L to determine when two digraphs are equal (Theorem 1). Define Gn (resp. Gn ) as the 
graph whose vertices are elements of Zw (resp. Z^) with an edge from \ to b2 ifbk = b2 (mod ri). 

Our principal results on G„ are: 
(1) Determine when G$ = G*2" (Theorem 1). 
(2) Show that elements in a cycle have the same order, d, and determine the cycle length, 

1(d), based on that order (Theorem 2). 
(3) Derive a formula for the number of cycles of order d (Theorem 3). 
(4) Show that the trees of all cycle vertices are isomorphic (Theorem 4) and derive a formula 

for the height of these trees (Theorem 5). 

We handle Gk-Gk by showing that well-defined parts of this graph are isomorphic to cor-
responding G^'s (Theorem 6). Finally, we use these well-defined parts and a result about the 
number of solutions to congruences (Theorem 7) to fill in the whole of G*. 

2, BACKGROUND RESULTS 

The following facts will be used in Sections 3 and 4. Facts 1, 2, and 3 are from [3]. 
Faet 1 (Chinese Remainder Theorem), If (mi9mJ) = l (l<i <j<n), then the simultaneous 
congruences x = at (mod04), 1 < i < n, have a unique solution mod m^ ...mn. 
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Fact 2. A necessary and sufficient condition for m to have a primitive root is that m = 2, 4, pe, or 
2pe, where/? is an odd prime. 
Fact 3. Let £ > 2. Then the order of 5 with respect to the modulus 2£ is 2£~2. 
Fact 4, For/? an odd prime either the congruence xk = b (mod pm), p\h has 0 or (k,pm~l(p -1)) 
solutions. The number of solutions of xk = b (mod 2a) is 0 or (2, A:/1 (2a~2, &)*2. 

Proof: If/? is an odd prime, Fact 2 says !tpm = Z m-i(/7-1̂ . Multiplication in Zy* corresponds 
to addition in Z^-i^ ,^ , so x* corresponds to kx. The map 

A*: Ip^tp-v -> ~Z-P
m-\p-\) such that ^ ( x ) = Ax 

is a (k,pm~l(p -1))-to-one map, so an element in Zpm-i^p_^ is either the image of (k,pm~l(p -1)) 
elements or none. 

For modulus 2a, Fact 3 says Z â = Z^1 x I^l_2. In Z21 x Z^-2, the multiplication by k map is 
(2, &)*1 (2a~2, £)*2 -to-one, giving our result. • 
Fact 5. In Zw, the cyclic group of order m, there exists an element of order £ if and only if £\m. 
Further, if there exists an element of order £, then there exist exactly </>(£) of them. 

Proof: lf£](m, then Lagrange's Theorem says there is no element of order £ . 
If £\m, then m~£u. For b an element of order m, we have £{ub) - (£u)b = mb = 0. Further, 

if£'<£ such that £'{ub) - 0, then m\(£'u), but -£'1/ < m, a contradiction, so t/Z? is of order ^ . 
Finally, we need to count the number of elements of order £ if there is at least one. For b of 

order m, we know ord(vft) = m/(v,m), so we get an element of order £ if and only if u = (v, m). 
Since u\m, we know v must be a multiple of u, but u = (vfu, m) if and only if 1 = (v', £). There are 
$(£) such values of v'. • 

Fact 6. For {mx, m^) = 1, we have 

Proof: The map p:Z*mim2 - > i , x Z ^ defined by p(x) = (x (modWj), x (modz^)) is easily 
shown to be a homomorphism. It is an isomorphism since Fact 1 allows us to define a map which 
is the inverse: 

p~l: Tmx x Z^ -» Tmxmi such that p~l(x, y) = z, 

where z = x (mod m^), z = y (mod m^. D 

Facts 2 and 3 tell us the structure of I*p<: 

T.= -p 

{1}, for/? = l,l=\ 
Z2, for/7 = 2,1 = 2, 
Z J X Z J M , for/? = 2,£>3, 0 ) 
^ ' ( p - i ) ' ^or/7 a n ° ^ prime. 

From the structure of Z^/ and Fact 6 follows the structure for Z^. If n = 2" YYJL 0 /3f' > t n e n 

?5^xrrfx z *^ x ^ x WD x '" x Wir (2) 
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Fact 7* In the group Z ^ x Z ^ x - x Z ^ , there are (ri\9 d)^, d)...(jnr,d) elements of order 
dividing d. 

Proof: Since the order of (xh x2,..., xr) is the least common multiple of the orders of the 
x/s, it is sufficient to show there are (m^d) elements of order dividing J in Zm.. Zm. is cyclic of 
order mt, so if A ^ there are <j>(h) elements of order exactly b. If b\m^ there are no elements of 
order b. The number of elements of order dividing d is thus 

£#*)= E #*) = (*"*) 
b\d,b\™t bKd,^) 

by a famous property of the Euler-^ function (e.g., [3], Exercise 1, Section 2.5). • 

3. STRUCTURE OF G** 

Gk is, by definition, the digraph whose vertices are the elements of lLn and with an edge from 
\ to b2 if b\ = b2 (mod ri). Since b\ (mod ri) is well defined for any given bl9 k and n9 the 
outdegree of any vertex in our digraph is one. Since the outdegree from any vertex is one, we 
know that each component of Gk contains at most one cycle. Since there are only finitely many 
vertices, it is clear that from any starting point iteration of the km power map eventually leads to a 
cycle, so each component contains exactly one cycle. The vertices in a component outside the 
unique cycle are thus acyclic and form a forest. 

If p\n Is a prime and p\b, then p\bk, so p\(bk (modw)). If p\b, then p\bk, so p\(bk 

(mod/*)). This says, if n = 2ap"lp%2 ...p%", there are at least 2m components, at least 2m+l If 
a ^ 0. In particular, we will examine the components with vertices relatively prime to n separ-
ately from those with vertices not relatively prime to n. 

Recall that Gk* was defined to be the digraph with the elements of Z^ as vertices and an edge 
from bx to b2 if bk = b2 (mod ri). By the last paragraph, we can study this graph independently of 
the vertices not relatively prime to n. We start our study with a lemma on tj/(d), the number of 
elements In Z^ of order d. 

Lemma 1: Ifn = 2a U™=1 p?' and y/(d) denotes the number of elements of order d In Z^, then 
m 

¥{d) = (2,d)s>(2°~\d)s*\{(d,prl(p< -1))- IY(8). 
1=1 8\d,8*d 

Proof: From Fact 7 and (2), we know the number of elements of order dividing d is 
(2,d)5i(2-2,d)s> IlU^pr'iP,--1)), i-e., 

m 

X yr(S) = (2, dt (2"-\ d)5*Y[(d, p?-l(p, -1)). 
S\d i=l 

Solving this for y/(d) gives the result. • 

The following results are analogs of results 11 through 14 of [4]. 

Lemma 2: The indegree of any vertex in G** is 0 or (2, *)* (2a~2, k)s> TJZL^k, p^iPi ~ 1)). 
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Proof: T^=I%1 xZ^_2 x Z *-i( _« x • • • x Z <j,-i( x). For b GZ*n9xk =b (mod w) is equiva-
lent to 

x*=Z> (mod 2"), 
x*=* (modrf1), /3x 

xk^b (mod/fr). 

By Fact 4 we know that, for/? odd, xk =b (mod/?"') has 0 or (k9 p^~l(Pj -1)) solutions and, for 
modulus 2*, there are 0 or (2, k)Sl (2a~2, k)Sl solutions. Taken together, the system (3) thus has 0 
or (2, *)*' (2*-2, k)8* WLi(k, p?-l(pt -1)) solutions. D 

Corollary 1: Every component of G** is cyclic if and only if (29k)8l(2a~2
9 kf1 =1 and 

(* , / f" 1 ( f l - l ) ) = lfiiraIli. 

Proof: If a component of Gk* is cyclic, then every indegree must be 1. By Lemma 2, this 
says (2, k)Sl (2a~2, k)8* YL?=l(k9 p^'l(pt -1)) = 1, so each factor must be 1. 

Conversely, if (2, k)8l(2a~2
9 kf2 = 1 and (A, p?r\pt -1)) = 1 for each i, then Lemma 2 says 

the indegree of any vertex must be 0 or 1. Since each outdegree is 1 and the sum of the indegrees 
and outdegrees must be equal, this forces each indegree to be 1, so every component is cyclic. • 

Corollary 2: Any cycle vertex has (2, k)Sl(2a'29 *)*2(nj!Li(*, p?~l(pt ~ l)))~l noncycle parents. 

Proof: If A is a cycle vertex, the indegree is at least one because it has a cycle vertex parent. 
By Lemma 2, the indegree of * is (2, k)8l(2a~2

9 kf1 Il?=l(k, p?1'^ -1)). Since exactly one of 
i's parents is a cycle vertex, there are 

(29k)*(2a-2
9k)s 

noncycle parents.- • 

( m \ 
\n(k>p?~i(Pi-i)) - i 

Theorem 1: kx = k2 (mod L) if and only if G*1* = G*2*. 

Proof: Since Z^ = Zf1 xZ**_2 x 7Lp<*-\p_i) x ••• xZpyi^Pm_^9 all elements have orders divid-
ing L and we know that there exists an element of this order, namely, (1, 1,..., 1). 

If kx = k2 (mod L\ then for any b e C 6*» = 6*2+^ s 6** (mod /i). 
Conversely, if G*r = G*2, then A*1 = A*2 (mod w) for all b e Z£. This means ord„61(kx ~ k2). 

Since there is an element of order Z, we get kx = £2 (mod L). D 

We now classify whether an element of a given order will be in a tree or cycle. First, we fix 
notation: factor L = tw for t the largest factor relatively prime to k. 

Lemma 3: The vertex A is a cycle vertex if and only if (ord„A) 11. 

Proof: If b is a cycle vertex, then there is some £ such that bk =b (mod n). We assume £ 
is the minimal natural number with this property. Since bk _1 = 1 (mod ri)9 we know that 
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(ord„ft)|(Ji^-l), so (ord„ft,&) = land(ord„ft,w) = l. Since (ord„ft)|Z, we have (ord„ft)|rw, so 
(ord„ft)|r. 

Conversely, if (ord„ft)|/, then bl = 1 (mod n), so (t, k) - 1 implies there exists £ > 0 so that 
kl = 1 (mod t). This means ft* _1 = 1 (mod n\ so bkt = ft (mod ^), so ft is a cycle vertex. D 

An immediate corollary of this classification is a count of the number of cycle vertices in Gk*. 

Corollary 3: There are (2, t)s* (2a~2, t)5* II™ ̂  p-^iPi ~l)) cycle vertices. 

Proof: By Lemma 3, we are counting the number of elements of 7*n of order dividing t. By 
(2) and Fact 7, there are (2, i)5x(^a~2, if1 U™=i(t, p?~l(Pi ~ 0) elements of order dividing t. D 

The following result gives a connection between cycle vertices in the same cycle. 

Lemma 4: Vertices in the same cycle have the same order modulo n. 

Proof: It is enough to show that consecutive vertices in a cycle have the same order. Sup-
pose b2 = b\ (mod??). If ord^ = £x and ord„ft2 = £2, thenft̂ 1 = (ft*/1 s {b^f = lk = 1 (mod TI). 
This means £2\£x, s o 

ord,A > ordA = ord„(Z>*) > ordn(bp) > • • • > ord„(Zf'>) = ord/,. 

This forces all the inequalities to be equalities, so the orders of all elements in the same cycle are 
equal. D 

By Lemma 4, it makes sense to speak of the order of a cycle. The next result relates the 
order and length of a cycle. 

Theorem 2: The length £{d) of a cycle of order d is the smallest natural number I such that 
rf|(*'-l),i.e., £(d) = orddh. 

Proof: If £(d) denotes the cycle length and ft is a cycle vertex, then ft # ft^ (mod ri) for any 
i<£(d), but b = b(km) (mod TI). Stated differently, b&~l) ±\ (mod TI) for any i<£(d), but 
j(**°-i) _ i ( m o d ny s i n c e o r d ^ = df t h is says d\{kj -1) for any i < £{d) but d\(kiW~l). U 

We can use Theorem 2 to get the length of the longest cycle in Gk . 

Corollary 4: The longest cycle in Gk has length £(t) = ordf&. 

Proof: By Lemma 3, the order modulo n of every cycle vertex divides t. Further, there 
exists a cycle vertex of order t. Since, for any d\t, we have k^ = 1 (mod t) implies k£^ = 1 
(mod d), Theorem 2 says £(t) = ordtk > orddk = £(d). Therefore, the greatest cycle length is 
£(t) = ordtk. D 

The following theorem gives the number of cycles in Gk of a given order. 
7 * 

Theorem 3: The number of cycles of order d in G„ is y/(d) I £{d). 
Proof: There are, by definition, y/(d) elements in Tn of order d. Each is in a cycle of length 

£{d) containing only elements of order d, so 
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y/(d) _ number of vertices of order d 
1(d) number of vertices of order d per cycle of order d 

= number of cycles of order d. • 

Finally, we give a few results about the tree structure. These results parallel those for prime 
modulus [4]. If b is a noncycle vertex in Gk , the height of b is defined to be the minimal natural 
number h such that bk is a cycle vertex. For c a cycle vertex, define F* as all noncycle vertices b 
of height h such that bk =c. We define the tree above c as Fc = (Jh F*. 

Lemma 5: If b,c eGk , b eFx, and c is a cycle vertex, then be eF^ . 

Proof: By Lemma 3, (ordwft)j7 while (ordwc)|f. Since ltn is abelian, (6c)r = b*tf =b* # 1 
(mod «), so the order of Ac does not divide t. By Lemma 3, this says be is not a cycle vertex, so 
the product of a cycle and noncycle vertex is a noncycle vertex. 

Since (bc)kh = bkhckh = ckh (mod n\ we see be is in the forest above the cycle containing the 
vertex c. If i <h9 then (bef = bk'ck' (mod w), which is a cycle times a noncycle, thus a noncycle 
vertex. This means that be first meets a cycle after h iterations of the k^ power map, i.e., 

heeFh
kh. D 
cK 

We can use Lemma 5 to show that any two trees in Gk are isomorphic. 

Theorem 4: If c is a cycle vertex, then Fl=Fc. 

Proof: For each h, we wish to construct a map from F* toF* that is one-to-one, onto, and 
preserves edges. As in [4], we define ch as the cycle vertex such that c\ =c (mod n). This 
means ch is the cycle vertex h cycle vertices before the cycle vertex c and therefore exists and is 
well defined. Following [4], define fh:F* ->F* such that fh(b) = bch (mod n). 

If bly b2 el7/1 and f^) = fh(b2) (mod n\ then bxch = b2ch (mod n). Since ch eZ*, this implies 
Oh ~~ ̂ 2)^ = ^ (mod n\ so ^ = A2 (mod ri). 

If* e i ? , then (bc^f = bk\ekhyl EE of1 EE 1 (mod /i). Since (be^lf~l ^ ^ (ef~l )~l (mod 
??) is a noncycle times a cycle vertex, we get a noncycle vertex. Therefore, bc^1 ei7/2 and 

Having shown fh is one-to-one and onto for vertices, we must show it preserves edges. 
Specifically, if bx G F / + 1 and b2 eFx

h such that bk = b2 (mod «), then fh+lQ\)k = tfck
h+l =b2ch = 

fh(b2) (mod «), where we have used c£+1 = ĉ  (mod n), since c^+1 is A +1 vertices before c in the 
cycle and ch is h vertices before c in the cycle. Similarly, if \ e F*+l and b2 e F* such that 
if = b2 (mod w), then (Va+i)* = *M+i = *2C* (moc* «)• • 

Finally, we give two results to help determine the height of the tree, i.e., the maximum height 
of a noncycle element of Gk . Both of these are direct analogs of the prime modulus case [4]. 

Lemma 6: IfbeFc and d = ord„c, then (ordnb)\khd if and only if b GFC
X for some x < h. 
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Proof: lf{or&nb)\khd, then oxAn{bk")\d so oxdn{bk")\t since d\t as c is a cycle vertex. This 
means bk is a cycle vertex in the same cycle as c, so ft GFC

X for some x < h. 
Conversely, if ft GFC

X for some x<h, then bk* =c (mod ri) so ord„(ft̂ *) = <i. Therefore, 
ord„(ft^) = ordw((i**)kh~x) = ordwc**~* = J by Lemma 4. D 

Theorem 5: The height of the trees in Gk is the minimal h such that Z \kht. 

Proof: If (&, Z) = 1, then t-Lso Lemma 3 says that all vertices are cycles; thus, the height 
is 0 and L\k°t since t = L. 

If (&, L) ̂  1, then h > 0. Take ft a vertex of maximal order, ord„ft = L. By Lemma 6, ft is of 
height A since (ord„ft)|^^ but {orAJ))\kh'lt. D 

4 STRUCTURE OF G * - G f 

Let p be the set of all prime divisors of n and consider a partition of this set: p - px ^>p2. 
Let Gk

hp be the graph whose vertices are the multiples of Yipepxp relatively prime to all p Ep 2 

and with an edge from bx to ft2 if ftf = ft2 (mod w). If ap is such that pQp\n but pap+lj[n, define 
^ = UPeplpap and ̂  = I l p e ^ ^ - Define Gk

pim2LX to be the graph whose vertices are the mul-
tiples of r\ relatively prime to all p e p2 and where there is an edge from \ to ft2 if ftf = ft2 (mod 
ri). We give a few results to help determine the structure of Gk^. 

Theorem 6: Gk^max = G%. 

Proof: Let ft0 be the solution to npQ = 1 (modn2). Define 

ju:G% -> G^i?max such that //(ft) = ftft^ (modri). 

For q Gp2, g|ft0, ^ j / ^ so ft eG*' implies ftft^ (mod ri) is in Gk
pim&x. Having shown our map is 

well defined on the set of vertices, we must show it is one-to-one onto, and preserves edges. 
If ju(I\) = ju(b2) (mod ri), then (ftx-ft2)ft(/i1 = 0 (modri). This means (bl-b2)bQ = 0 (mod n^). 

Since ft0 is invertible modulo n2,bl-b2 = Q (mod r^) so bl = b2 in G^ . 
If c <E G* ^ max, then c = fl^, so we want to show that there exists ft e G*2 such that //(ft) = c 

(mod ri). This is equivalent to 
ftfto^ = c^ (mod ri), 

which is equivalent to 
ftft0 = cQ (modWj). 

Since ft0 is invertible modulo r^ and c0 is relatively prime to all primes in p2, ft = ftj"1^ (modf^) is 
an element of G* sent to c via //. 

If ft1? ft2 e G^ such that ft* = ft2 (mod Wj), then 

//(ft/ s ftf bknk ^ ftf ft0^ = ft^ EE //(ft2) (mod w). 
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Finally, we deal with those vertices divisible by Upe^ p but not by nx. 

Theorem 7: (llpe^ pbp)h with (b, p)-l for all p e p has zero or 

( ^ ( 
n (*,pa'~i(p-iy) u P 

\^pepu p*2, bp>ap, kcp>ap 

ap-Cp-\p~\) 

^ /?ep l 5 p*2, ap>cpk, bp=cpk 
P^{k,p°>-b>-\p-\)) 

(2,k)s>(2<"2,k)s> i f 2 e p 2 

2a~°1~x if2ep1,b2>a,c2k>a 

2(*-0«*Q ky,(2a-*»-2, A:)54 if 2 e px,a > c2k, b2 = c2k 

parent vertices of the form {Upzp^^c with (c, p) = 1 for all pep, where 

[0 i f a - 6 , < 2 , [0 ifa-Z>2<3, 
o, = < and <?d = < 

3 [1 i f a - i 2 > 2 , 4 [1 ifa-b2>3. 
Proof: We want to find the number of distinct solutions, {YlP^>lpCp)c, to 

ff \k 

UP* \C 
\pep\ J J 

UP 
\pep\ J 

b (modw), 

where (cb, p) = l for ail pep. 
This is equivalent to counting the number of solutions to the system 

ff \ Y ( \ 
UP 

\\P*Pi J 
UP' \b (mod2a), 

\pe&>\ J 
ff U * / \ 

UPPY\ A Il/Pp(modK0 
\\p*p\ / ) \P&&\ ) 

ff } 
\UPC> 

\\pep\ ) 

Y 
C 

J 

= 
( \ 

UP> 
\p*fp\ J 

b (modpj-). 

Fact 1 allows us to work with each of these congruences separately and then multiply the number 
of solutions to each congruence to get the number of solutions to the system. 

If q e p 2 , then all p epx are invertible, so the number of solutions to 

ff ^ Y ( \ 
b, UP 

K\P*P\ ) 
Y[pp \b (modq**) 

\p*p\ J 
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equals the number of solutions toe* s b' ( m o d ^ ) for some b'. By Fact 4 the number of solu-
tions is zero or (/c,qag~l(q-l)) if q is an odd prime, and zero or (2, k)Sl (2a~2, k)Sl ifq = 2. 

If q G pl9 then all p e px - {q} are invertible, so the number of solutions to 

JJPP H H HPP \b (modqa«) 

is equal to the number of solutions to (qCgc)k = qbqb' (modg^) for some bf. If cqk^bq and 
either bq <aq or cqk <aq, then there are no solutions for (cb\ q)-\ since the powers of q divid-
ing the left- and right-hand sides of the congruence will be unequal for all k. 

lfbq,cqk>aq, then we are trying to solve 0-ck = 0 (modqaq). This has qaq~Cq~l(q-l) solu-
tions c for which (c, q) = l and qCqc are distinct modulo qQq. For q = 2, this reduces to 2a~°2~l. 

Finally, if aq>cqk = hq, then; the number of solutions qCqc to (qCqc)k =qb°b' {modqaq) is 
q{k~l)cg times the number of solutions to ck = b! {modqQq~bq). By Fact 4 this is zero or 

ifq is am odd prime, and zero or 

2{k-i)c2 Q ky3 (2a~bl~2, kf4 

ifq = 2. 
The product of the numbers of solutions to each of these congruences gives the number of 

solutions to the system, proving the result. D 
Remark: Similar results may be developed where the hypothesis (c, p) = 1 is dropped. For 
example, if p e p x is an odd prime and (b, p) = l, then the number of solutions to (pCpc)k = pbpb 
(mod pQp) is zero or pap~cp if cpk, bp>ap. Other cases for a , b 9 cpk may be worked out as in 
the proof of the last theorem. 

5. AN EXAMPLE 

Example 1: We will determine the structure of G5
2
6. Note that n - 56, k-2, L = 6, t - 3, and 

w = 2. We start with the components with vertices that are not multiples of 2 or 7. Z^6 = Z^ x 
Z^ = Z6 x Z2 x Z2. This means the orders of all elements divide lcm(6,2,2) = 6. We get the num-
ber of elements of each order using Lemma 1. 

Kl ) = 0,6)(1,2)0,2) = 1, 
<K2) = (2,6)(2,2)(2,2)-K1) = 7, 
<K3) = (3,6)(3,2)(3,2)-K1) = 2, 
y(6) = (6,6)(6,2X6,2) - ¥(3) - ¥(2) - V(l) = 14. 

The one element of order 1 goes to itself since 21 = 1 (mod 1); the seven elements of order 2 each 
go to the element of order 1 when squares; the two elements of order 3 are, by Theorem 2, in a 
cycle of length 2 since 21 ̂  1 (mod 3), but 22 = 1 (mod 3); and the fourteen elements of order 6 
go to elements of order 3. If b is an element of order 3, we know that x2 = b (mod 56) has at 
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(4) 

least one solution (the other element of order 3). Solving x2 = b (mod 56) is equivalent to solving 
the system 

x2=b (mod?) 
x2=b (mod 8). 

Since Tn = Z2 x Z3, the first congruence in our system has 0 or 2 solutions. Since ZJj = Z2 x Z2, 
the second congruence in our system has 0 or 4 solutions. This means the system (4) has 0 or 8 
solutions. Since there is at least one solution, this forces each element of order 3 to have indegree 
8, i.e., seven elements of order 6 and one of order 2. This completely classifies the structure of 
G\\ (see Fig. 1). 
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® 

Pi = {7}.G?6{7} 

Pi = {},G?; 

y 
® 

® 

Pi = {2i7},G|6i{2i7} 

o =odd mult, of 2 

\p 
Pi = {2},G^6]{2} 

x=odd mult, of 4 

^j 

=mult. of 8 

FIGURE 1. Gt 56 

Next, consider the components which are multiples of 7 but relatively prime to 2. By Theo-
rem 6 this will have a digraph structure isomorphic to Gg*. ZJ = Z2 x Z2, so there is one element 
of order 1 and three elements of order 2. Each element of order 2, when squared goes to the ele-
ment or order 1. 

The trickiest part is classifying the components that have vertices which are multiples of 2 but 
relatively prime to 7. By Theorem 6, G2

6 {2},max = ^h • Z^ = Zg, so there is one element of order 
1, one of order 2, two of order 3, and two of order 6. Upon squaring, the element of order 1 
goes to itself, the element of order 2 goes to the element of order 1, the elements of order 3 go to 
each other, by Theorem 2, since 21 # 1 (mod 3), 22 = 1 (mod 3), and the elements of order 6 go to 
the elements of order 3. By Fact 4, x2 = b (mod 7) has 0 or 2 solutions (since Tn = Z2 x Z3) and 
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each element of order 3 has the other element of order 3 coming to it, we know the indegree must 
be 2, so each element of order 6 goes to a different element of order 3 (see Fig. 1). 

We now add vertices for the multiples of 4 and of 2 that are prime to 7. Theorem 7, with 
n = 56, k = 2, px = {2}, p2 = {7}, c2 = 2, and b2 > 3, says the indegree for vertices that are multi-
ples of 8 from those that are multiples of 4, relatively prime to 7, is zero or (2, 71_1(7 -1))23"2-1 = 
2. Using the remark after Theorem 7, considering the graph of multiples of 4 relatively prime to 
7, each vertex has indegree 0 or 4. There are 5 6 - | - | = 6 odd multiples of 4, so each of the three 
cycle vertices of G5

2
6 {2},max n a s t w o °dd multiples of 4 parents (see Fig. 1). 

To add the odd multiples of 2 prime to 7, we note that these will be parents of odd multiples 
of 4. Using Theorem 7, with n = 56, k = 2, px - {2}, p2 = {7}, c2 = 1, and b2 = 2, says the in-
degree for vertices that are odd multiples of 4 from those that are odd multiples of 2, relatively 
prime to 7, is zero or (2, 71-1(7-1))2(2-1)1(2,2)0(2°,2)0 = 4. Using Theorem 7, with /i = 56, 
k = 4 = 22, px - {2}, p 2 = {7}, c2 - 1, and h2 > 3, says the number of odd multiples of 2 in each 
tree in G2

6 {2} is zero or (4, 71_1(7-1))23"1-1 = 4. Since there are 5 6 - } - | = 12 odd multiples of 2 
relatively prime to 7, we have three sets of four odd multiples of 2 going to one of each pair of 
odd multiples of 4 over each cycle vertex in G^6{2}max (Fig. 1). This completes the structure of 
r2 

^ 5 6 , {2} • 
Finally, G5

2
6, 

{2}, max = Q2 > which is a single element with edge from and to itself. To map 
directly onto a multiple of 23 -7, the power on 2 must be at least 2, so the only parent of our 
single cycle vertex is the odd multiple of 22 -7 (mod 56). Odd multiples of 2-7 map to the odd 
multiple of 22 • 7 when squared. This completes the description of G2

6 (see Fig. 1). 
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