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1. INTRODUCTION 

Let W(x), fix), g(x) be formal power series with complex coefficients, and W(x) * 0, 
W{0) = 1, / (0) = g(0) = 0, Then the coefficients {B^n, k), B2(n, k)} in the following expansions, 

W(x)<J(x)f lk\ = £ B f a k ) x " l n \ , (g{x)f /[W(g(x))k\] = ^B2(n,k)xnln\, (1) 
n>k ri>k 

are called a weighted Stirling pair if f(g(x)) = g(f(x)) = x, i.e.,/and g are reciprocal. 
When W(x) = l, B^in.k) and B2(n,k) reduce to a Stirling type pair whose properties are 

exhibited in [7]. 
In this paper, we shall present a weighted Stirling pair that includes some previous generaliza-

tions of Stirling numbers as particular cases. Some related combinatorial and arithmetic proper-
ties are also discussed. 

2. A WEIGHTED STIRLING PAIR 

Let t, a, P be given complex numbers with a-(1*0. Let f(x) = [(1 + ax)P'a -1]//?, g(x) -
[(\+px)alp-l]la, and W(x) = (l + ax)t/a. Then, in accordance with (1), by noting that f(x) 
and g(x) are reciprocal, we have a weighted Stirling pair, denoted by 

{S(n, k, a, /?; t\ S(n, k, /?, a, -1)} = {£> , k), B2(n, k)}. 

We call it an (a, /?; /) [resp. a (ft, a; -t)] pair for short. Moreover, one of the parameters a or 
p may be zero by considering the limit process. For instance, a (1,0; 0) [resp. a (0,1; 0)] pair is 
just Stirling numbers of the first and second kinds. 

Note that from the definition of an (a, /?; t) pair and the first equation in (1), we may obtain 
the double generating function of S(n, k, a, /?; t) as 

(l + ax)'/acxpL(l + ax^a~l\ = ^S(n,k,a,B-, t)^~uk. (2) 

If we differentiate both sides of (2) on x, then multiply by (l + ax) and compare the coefficients of 
xnuk, we have 

S(n, k-l,a,ftt+P) = S(n +1, k, a, fi; t) + (na - t)S(n, k, a, /?; t\ (3) 

and if we differentiate both sides of (2) on u and then compare the coefficients of xnuk:, we have 

S(nyk,a,P;t+P) = P(k + l)S(n,k + \a,p;t) + S(n,k,a,P;t). (4) 

Thus, the recurrence relation satisfied by S(n, k, a, /?; t) may be obtained by combining (3) 
and (4): 

S(n + \ k, a,P; t) = (t + fik-ari)S(n, k, a,/3; t) + S(n,k-l, a,p, t). (5) 
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The initial values of S(n, k, a, /?; t) may be verified easily from (1) because S(n, 0, a, J3; t) = 
t(t-a)(t-2a) -• (t-(n-l)a) for/ i>l , S(n,n,a,fi;t) = l for n>0, and S(n, k, a, fi;t) = 0 for 
k>n. Thus, a table of values of S(n, k, a, J3; t) can be given by concrete computations. 

« " 
0 
1 
2 
3 

£ 0 
1 
t 
t(t-
t(t-

TABLE1. S(n 

-a) 
-a) 

1 

1 
2t + /}-a 
(t+fi-2a) + 

, K, 

t(t-

a,fi;t) 

-a) 

2 3 

1 
3t + 30-3a 1 

From (2), we may get the explicit expression for S(n, k, a, J3; t) via the generalized binomial 
theorem along the lines of (4.1) in [6]. 

For a complex number a, define the generalized factorial of x with increment a by (x\a)n -
x(x - a)(x -2a) - - - (x -na + a) for w = 1,2,..., and (x\a)0 = 1. 

Theorem 1: The (a, /?; t) pair defined by (1) may also be defined by the following symmetric 
relations: 

((x + /) |a)„ = £S(n , K a, ft; t)(x\fi)k; 
fc=0 

(*!/?)„ = £s(«,*, A «;-0((*+0l«)*-

(6) 

(7) 
k=0 

Proof: The proof of the theorem may be carried out by the same argument used by Howard 
[6], by showing that the sequences defined by (6) and (7) satisfy the same recurrence relations and 
have the same initial values as that of an (a, /?; t) pair. D 

Examples: Let A, 0 * 0 be two complex parameters. The so-called weighted degenerate Stirling 
numbers (Sx(n, k,A\0),S(n, k, X\0)) were first introduced and discussed by Howard [6] with 
definitions 

and 

( l - x ) 1 - ^ 1 " 0 - *>*! =k\YdSl{n,k,X\0)^ 
V * ) n>k "• 

{\+ex)^n\+exy -\f ^k^si^KX^^-, 
riik n\ 

where 9p = \. Now it is clear that (-l)"-^,(»,k, \,X\0) = S{n,k,\,9;9-X) and S{n,k,X\6) = 
S{n,k,6,\;X). 

The limiting case 0 = 0, X * 0, gives the weighted Stirling numbers (R^n, k, X), R2(n, k, X)) 
discussed by Carlitz ([2], [3]) with definitions 

(l-xy\-log(\-x))k = * !£* , (» , k, X)?-
n>k n ' 

and 
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n>k H-

where the weight function et* comes from the limit of (1 + 0t)xie as 0 -> 0. It is apparent that 
((-l)^%(n, Jfc, X\ R2(n, k, X)) forms a (1,0; - X) pair. 

Further examples are the degenerate Stirling numbers [1] defined by 

and 
((i+ftr-i)* = *!2>i,*|0)£, 

n>k m 

where 0// = 1. It is clear that {(-\)n-kSx{n, k\0\ S(n, k\0)) is a (1,0;0) pair. 
The noncentral Stirling numbers were first introduced by Koutras in [8] with the definitions: 

(0„ = 5>a(»,*X'-«)k; 

(t-a)" = ^Sa(n,k)(t)k. 
Jc=0 

It is now clear by Theorem 1 that (sa(n, k), Sa(n, k)) is a (1,0; a) pair. 

3. REPRESENTATIONS OF WEIGHTED STIRLING PAIRS 

For r > 0, fr * 0, let F(x) = Z*=r fkxk I k! and JF(x) = T% WjXj I j ! be two formal power 
series. Following Howard [6], for complex z, we define the weighted potential polynomial Fk(z) 

by 
'*-*'-* =<£Fk(zyx*/k\. (8) ^l^f" fc=0 

Moreover, if r > 1, define the weighted exponential Bell polynomial Bn k(0,..., 0, / r , /r+1,...) by 

*P(x)[F(x)]* = .*! fX, (0 , . . . , 0/ r , / r + 1 , ...)*" ln\. (9) 

The following lemma is due to Howard ([6], Th. 3.1). 

Lemma 2: With Fk(z) and Bnk defined above, we have 

Now, from (9) with W(x) = (1 + ox:)'7" and F(x) = [(1 + ax)/3,a -1] / /?, we have 

S{n9k,a9frt) = B^k(\p-a9tf-a)<fi-2a\W^ (10) 

Define the weighted potential polynomials Ak(z) by 
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If we differentiate both sides of (11) with respect to x, then multiply by l + ax and compare 
the coefficients of xk, we obtain 

zAk{z +1) = (z - k)Ak{z) + k(t + (a - fi)z -(k- \)d)Ak_x{z). 

It follows that 

(-l)k[k~riyk(rr + l) = (-dk{k~k"yk(n)Ht + (a-fi)n 

-(k-VaX-lf-^-^yU"), 
with initial conditions 

^~"0"1J4)(« + l) = l,for»>0, (13) 

(-!)"(~^\An(n + \) = (t + a-P){t + a-2P)---{t + a-nP), for n>\. (14) 

(12) 

and 

Therefore, by equations (12)-(14), and the recurrence relations satisfied by S(n,n-k,fi, a; 
t + a- fl) [may be deduced from (5)] and its initial values, we have that 

{_lf(k-n-^Ak{n + \) = S{n,n-k,p,a-t + a-P). 

It then follows from Lemma 2, by taking r = 1 and (10) that 

By symmetry, we have the following representation formulas for weighted Stirling pairs. 

Theorem 3: For S(n9 k9 a, /?; t) defined by (1) and S(n, k,f3,a;t + a-{T) defined in a like way, 
we have 

£(»,*, a,£0 = l V l ) { ^ J ^ (15> 
and 

S(n, k,fi,cr,t + a-fl = %(-&$-k*}){„^ (16> 

Remark: It should be pointed out that similar representation results for the particular case when 
a = 0, 0=1, and t = l-X has been proved by Howard [6]. Here we borrow his proof 
techniques. 

4. CONGRUENCE PROPERTIES OF WEIGHTED STIRLING PAIRS 

A formal power series $(x) = E w > 0 ^ " /«! is called a Hurwitz series if all of its coefficients 
are integers. It is well known that, for the Hurwitz series flx) with aQ = 0, the series {(f>{x))klk\ 
is again a Hurwitz series for any positive integer k. 
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In this section we always assume a,/3,t e Z . Then it is clear that both (f(x))k/k\ and 
(g(x))k/k\ in (1) are Hurwitz series, so that S(n, k, a, J3; t) and S(n, k, /?, a; -i) are two integer 
sequences. 

First, let t = 0. Then we have 
Theorem 4: Let p be a prime number and let k andy be integers such that j +1 < k < p . Then the 
following congruence relation holds: 

S(p + j,k,p,a;0)^0(modp). (17) 

Proof: Assume first that a 4 0 (mod /?). For a polynomial ^(x) of degree n in x, we may 
express it, using Newton's interpolation formula, in the form 

<f>(x) = <f>(a0) + y£[a0al,..ak]{x\a}k, 
k=\ 

(18) 

where [a0al ...ak] denotes the divided difference at the distinct points x = aQ, al?..., ak9... and 
{x | a)k =(x- a0)(x - ax) • • • (x - ak_x). Moreover, we have 

[a0al...ak] = 
1 a0 

1 ax 

1 CLu 

a\ l <f>(aQ) 
ak~l Mad 

<4 <l>(ak) 

1 a0 

1 ax 

1 CCu 

k-i o 
k-1 

«0 
of 

a£ * a> 

(19) 

Now take (/>p{x) = (x\fi)p, then ^,(0) = 0. We have, by (7) and (18), that 

5(p,*,/?,a;0) = [ a 0 a 1 . . . a J , (20) 

which may be expressed as a quotient of two determinants as in (19), where a^ - ja (j = 0, 
1,2,...). 

Notice that the classical argument of Lagrange that applied to the proof of 

(x-l)->(x-p + l) = xp-l-l (mod/?) 

may also be applied to prove the relation 
<f>p(x) = (x\P)p = x(x-fl)...(x-(p-i)0) S x'-fir-ix (mod/7), (21) 

where the congruence relation between polynomials are defined as usual (cf. [4], pp. 86-87, Th. 
112). Also, using Fermat's Little Theorem, we find 

\ja (mod/?), if/?|/?, 
|0 (mod/?), ifp\p, 

where j = 0,1,2,. . . . Consequently, we obtain, witha^ = ja for k > 1, 

1 a0 ••• ak~l jp(i 
1 ax ••• a\~l <j>p{ax)\ 

WaXJaY-fi^Ua)* 

1 a 

Moreover, the denominator is given by 
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k - <A~l tP(<*k) 

= 0 (mod/?). 
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a 
la 

ka 

ak 1 ak 

{kaf~l {kaf 
= a' k(k+t)/2 Y\(j-/) # 0 for k < p (mod/?). 

0<i<j<k 

Thus, we have that S(p, k, fi, oc; 0) = 0 (mod /?) for 1 < k < p. 
Furthermore, let F(x) = (x \fi)p+j. We then have F(x) = ! £ / S(p+j, k, fi, a; 0)(x | a)k and 

F(x) = 0p(x)(x-pfi)..-(x-(p + j)fi+fi) 
^ (xP - pP-lx)x(x - fi) ... (x - (J - \)fi) (mod /?) 
= (xp - fip~lx){xj + aps-x + • • • + a^ x ) (mod /?), 

where al9..., aj-x e Z. Consequently, we have, for 1 < i < p + y, 

(22) 

F(ia) = 

Since j < k -1, we have 

(mod/>), if Pi A 
(ia)y+1 + ̂ ( /a)7 + • • • + aj^Qaf (mod/?), if/?\fi. 

1 a0 
1 a j 

1 a t 

, fc - l 
0 

a ,k-i 

F(a0) 
F(a,) = 0 (mod/?), 

where the last column is a linear combination of the first k columns modulo/?. 
Again, the same denominator determinant is not congruent to zero modulo /? for k <p. 

Thus, we have that S(p + j , k, fi, a; 0) = 0 (mod/?) for j +1 < k < p. 
The case for a = 0 (mod/?) may be proved directly using (7), (21), and (22) by comparing 

the corresponding coefficients of powers of x in both sides of (21) and (22). Hence, the theorem 
is proved. • 

Note that in the particular case in which a = 1, fi = 0 or fi= 1, a = 0, Theorem 4 reduces to 
congruences for Stirling numbers of the first and second kinds; see [5] for other congruences for 
Stirling numbers. 

Corollary 5: Let a, fi, t be integers. Then the (a, fi; t) pair satisfies the basic congruence 

S(p, k, a, fi;t) = 0 (mod p), (23) 

where/? is a prime and \<k<p. 

Proof: Let W(x) = (l + ax)t/a = Idn>0arjxn/n\ with an eZ,a0 = l. Then it is clear from (1) 
that 

J]S(n,k,a,fi;t)x»M = \^anxVn\ \Ws(n,k,a,fi;0)x«ln\ 
«>o n>k 

so that we have 

S(p, k, a, fi; t) = f.a^SQ, k, a, fi; 0){p\ 
i=k V / 
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From Theorem 4 (taking j = 0) and the fact that (?) = 0 (mod p) for 0 < i < p , it follows that 
S(p, k, a, /?; r) = 0 (mod/?), and the corollary is proved. • 
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