# A CLOSED FORM OF THE (2, F) GENERALIZATIONS OF THE FIBONACCI SEQUENCE

## **Stefan Dantchev**

Center of Biomedical Engineering, Bulgarian Academy of Sciences Acad. G. Bonchev Street, Block 105, 1113 Sofia, Bulgaria e-mail: clbme@bgearn.acad.bg (Submitted February 1997)

#### 1. INTRODUCTION

In this paper we consider the generalized (2, F) sequences. They are introduced in [1] and [2], and some of their properties are studied in [1], [2], [5], [7], [8], and [9]. The generalized (2, F) sequences  $\{x_i\}_{i=0}^{\infty}$  and  $\{y_i\}_{i=0}^{\infty}$  are defined by their first two elements and two linear equalities:

$$x_0 = a, \ x_1 = b, \ y_0 = c, \ y_1 = d,$$
  
$$x_{n+2} = \alpha x_{n+1} + \beta y_n, \ y_{n+2} = \gamma y_{n+1} + \delta x_n,$$

for  $n \ge 0$ . In [1] the following open problem is given: Find a closed form of  $x_n$  and  $y_n$  for arbitrary *n*, i.e., represent them as functions of *n*, *a*, *b*, *c*, *d*,  $\alpha$ ,  $\beta$ ,  $\gamma$ , and  $\delta$ . In [5] such functions are obtained. They have one of the following five forms:

$$\begin{aligned} x_n &= C_1 \rho_1^n + C_2 \rho_2^n + C_3 \rho_3^n + C_4 \rho_4^n, \quad y_n &= C_5 \rho_1^n + C_6 \rho_2^n + C_7 \rho_3^n + C_8 \rho_4^n, \quad \text{or} \\ x_n &= C_1 \rho_1^n + C_2 \rho_2^n + (C_3 + nC_4) \rho_3^n, \quad y_n &= C_5 \rho_1^n + C_6 \rho_2^n + (C_7 + nC_8) \rho_3^n, \quad \text{or} \\ x_n &= C_1 \rho_1^n + (C_2 + C_3 n + C_4 n^2) \rho_2^n, \quad y_n &= C_5 \rho_1^n + (C_6 + C_7 n + C_8 n^2) \rho_2^n, \quad \text{or} \\ x_n &= (C_1 + C_2 n + C_3 n^2 + C_4 n^3) \rho_1^n, \quad y_n &= (C_5 + C_6 n + C_7 n^2 + C_8 n^3) \rho_1^n, \quad \text{or} \\ x_n &= (C_1 + C_2 n) \rho_1^n + (C_3 + C_4 n) \rho_2^n, \quad y_n &= (C_5 + C_6 n) \rho_1^n + (C_7 + C_8 n) \rho_2^n, \end{aligned}$$

where  $\rho_1, \rho_2, \rho_3$ , and  $\rho_4$  are the roots (complex in the general case) of the equation

$$\rho^4 - (\alpha + \gamma)\rho^2 + \alpha\gamma\rho - \beta\delta = 0$$

(the above five cases correspond to four simple roots, two simple roots and one double root, ..., two double roots, respectively) and  $C_i$ ,  $1 \le i \le 8$  are (complex) constants depending on a, b, c, d, and  $\rho_i$ ,  $1 \le i \le 4$ .

We shall give an alternative closed form for  $x_n$  and  $y_n$ . Our approach is fully combinatorial (it is based on an enumeration of weighted paths in an infinite graph) whereas the Georgieu-Atanassov method is from linear algebra (it uses Jordan's factorization form of some matrix). More concretely, we shall prove the following.

Theorem 1 (Main result): The equalities

$$\begin{aligned} x_n &= a \sum_{4p+q+r=n-4} \binom{p+q}{q} \binom{p+r}{r} \alpha^q \beta^{p+1} \gamma^r \delta^{p+1} + b \sum_{4p+q+r=n-1} \binom{p+q}{q} \binom{p+r-1}{r} \alpha^q \beta^p \gamma^r \delta^p \\ &+ c \sum_{4p+q+r=n-2} \binom{p+q}{q} \binom{p+r-1}{r} \alpha^q \beta^{p+1} \gamma^r \delta^p + d \sum_{4p+q+r=n-3} \binom{p+q}{q} \binom{p+r}{r} \alpha^q \beta^{p+1} \gamma^r \delta^p \end{aligned}$$

and

448

NOV.

$$y_{n} = a \sum_{4p+q+r=n-2} \binom{p+q-1}{q} \binom{p+r}{r} \alpha^{q} \beta^{p} \gamma^{r} \delta^{p+1} + b \sum_{4p+q+r=n-3} \binom{p+q}{q} \binom{p+r}{r} \alpha^{q} \beta^{p} \gamma^{r} \delta^{p+1} + c \sum_{4p+q+r=n-4} \binom{p+q-1}{q} \binom{p+r}{r} \alpha^{q} \beta^{p+1} \gamma^{r} \delta^{p+1} + d \sum_{4p+q+r=n-4} \binom{p+q-1}{q} \binom{p+r}{r} \alpha^{q} \beta^{p} \gamma^{r} \delta^{p}$$

hold for every  $n \ge 2$ , where all sums are taken for nonnegative integer values of p, q, and r.

## 2. PROOF OF THE MAIN RESULT

Our basic construction is an infinite directed graph G = (V, E) with weighted edges:

The set of vertices is  $V = \{W\} \cup \{X_i | i \in Z_{\geq 0}\} \cup \{Y_i | i \in Z_{\geq 0}\}$  (here  $Z_{\geq 0}$  denotes the set of nonnegative integers). The set of edges is  $E = E_1 \cup E_2 \cup E_3 \cup E_4 \cup E_0$ , where  $E_1 = \{(X_i, X_{i-1}) | i \geq 2\}$ , all edges from  $E_1$  have weight  $\alpha$  and we shall call them edges of type A. Analogously, the set of edges of type B with weight  $\beta$  is  $E_2 = \{(X_i, Y_{i-2}) | i \geq 2\}$ , the set of edges of type C with weight  $\gamma$ is  $E_3 = \{(Y_i, Y_{i-1}) | i \geq 2\}$ , and the set of edges of type D with weight  $\delta$  is  $E_4 = \{(Y_i, X_{i-2}) | i \geq 2\}$ . The last set  $E_0$  consists of the following four edges:  $(X_1, W)$  with weight a,  $(X_0, W)$  with weight b,  $(Y_1, W)$  with weight c, and  $(Y_0, W)$  with weight d. A graphical representation of G is given in the figure below.



We define the weight of a path in G as the product of weights of its edges. For two arbitrary vertices  $v_1, v_2 \in V$ ,  $v_1 \neq v_2$ , we define the function  $\omega(v_1, v_2)$  as the sum of the weights of all paths from  $v_1$  to  $v_2$  in G; for  $v_1 = v_2$ , we set  $\omega(v_1, v_2) = 1$ . The following lemma shows the connection between function  $\omega$  and sequences  $\{x_i\}_{i=0}^{\infty}, \{y_i\}_{i=0}^{\infty}$ .

Lemma 1:  $\omega(X_i, W) = x_i$  and  $\omega(Y_i, W) = y_i$  hold for every  $i \in \mathbb{Z}_{\geq 0}$ .

**Proof:** The proof is straightforward by induction on *i*. For  $i \in \{0, 1\}$ , we have  $\omega(X_0, W) = a$ ,  $\omega(x_1, W) = b$ ,  $\omega(Y_0, W) = c$ , and  $\omega(Y_1, W) = d$ . For  $i \ge 2$ , we observe that every path from  $X_i$  to W starts with the edge  $(X_i, X_{i-1})$  or with the edge  $(X_i, Y_{i-2})$ . Thus,  $\omega(X_i, W) = \alpha \omega(X_{i-1}, W) + \beta \omega(Y_{i-2}, W) = \alpha x_{i-1} + \beta y_{i-2} = x_i$ . The proof for  $\omega(Y_i, W)$  is similar.  $\Box$ 

We shall compute some values of the function  $\omega$  that we shall use further.

*Lemma 2:* The following equalities hold for every  $i, j \in \mathbb{Z}$ ,  $i \ge j \ge 1$  (all sums are taken for non-negative integer values of p, q, and r):

1. 
$$\omega(X_i, X_j) = \sum_{4p+q+r=i-j} {p+q \choose q} {p+r-1 \choose r} \alpha^q \beta^p \gamma^r \delta^p,$$

1998]

2. 
$$\omega(Y_i, Y_j) = \sum_{\substack{4p+q+r=i-j \\ q}} {p+q-1 \choose q} {p+r \choose r} \alpha^q \beta^p \gamma^r \delta^p,$$

3. 
$$\omega(X_i, Y_j) = \sum_{\substack{4p+q+r=i-j-2}} {p+q \choose q} {p+r \choose r} \alpha^q \beta^{p+1} \gamma^r \delta^p$$

4. 
$$\omega(Y_i, X_j) = \sum_{4p+q+r=i-j-2} {p+q \choose q} {p+r \choose r} \alpha^q \beta^p \gamma^r \delta^{p+1}$$

**Proof:** We shall prove case 1 only; the proofs of 2, 3, and 4 are similar.

Let us consider the structure of an arbitrary path from  $X_i$  to  $X_j$ . Edges of type B and D alternate, starting with an edge of type B and ending with an edge of type D. It is clear also that there are edges of type C only between neighboring pairs (B, D) and there are edges of type A only between neighboring pairs (D, B) at the beginning and at the end. Therefore, the considered path has the form

$$\underbrace{A\ldots A}_{q_1} B \underbrace{C\ldots C}_{r_1} D \underbrace{A\ldots A}_{q_2} B \underbrace{C\ldots C}_{r_2} D \ldots \underbrace{A\ldots A}_{q_p} B \underbrace{C\ldots C}_{r_p} D \underbrace{A\ldots A}_{q_{p+1}},$$

where the number of edges of types B and D is p, the number of edges of type A is  $q = \sum_{k=1}^{p+1} q_k$ , and the number of edges of type C is  $r = \sum_{k=1}^{p} r_k$ . It is known that the number of all nonnegative ordered p+1-tuples with sum q is  $\binom{p+q}{q}$  and the number of all nonnegative ordered p-tuples with sum r is  $\binom{p+r-1}{r}$ . Since the tuples  $(q_1, q_2, ..., q_{p+1})$  and  $(r_1, r_2, ..., r_p)$  are independent, we obtain that the total number of paths from  $X_i$  to  $X_j$  with q edges of type A, p edges of type B, r edges of type C, and p edges of type D is  $\binom{p+q}{q}\binom{p+r-1}{r}$ . Their weight is  $\alpha^q \beta^p \gamma^r \delta^p$ . Thus, we need all admissible values of p, q, and r to compute  $\omega(X_i, X_j)$ . Since the difference between indices of the vertices adjacent to the edge of type B or D is 2 and the difference for the edges of type A or C is 1, we have that i - j = 4p + q + r. That is why we obtain

$$\omega(X_i, X_j) = \sum_{4p+q+r=i-j} {p+q \choose q} {p+r-1 \choose r} \alpha^q \beta^p \gamma^r \delta^p,$$

where the sum is taken for nonnegative integer values of p, q, and r.  $\Box$ 

Now we are able to prove our main result (Theorem 1).

**Proof of the Main Result:** Let us observe that the last edge of an arbitrary path from  $X_n$  to W is  $(X_0, W)$  or  $(X_1, W)$  or  $(Y_0, W)$  or  $(Y_1, W)$ . Thus,

$$x_n = \omega(X_n, W) = a\omega(X_n, X_0) + b\omega(X_n, X_1) + c\omega(X_n, Y_0) + d\omega(X_n, Y_1).$$

Let us observe also that every path from  $X_n$  to  $X_0$  ends with edge  $(Y_2, X_0)$  and every path from  $X_n$  to  $Y_0$  ends with edge  $(X_2, Y_0)$ . That is why

$$x_n = a\delta\omega(X_n, Y_2) + b\omega(X_n, X_1) + c\beta\omega(X_n, X_2) + d\omega(X_n, Y_1).$$

The proof for  $y_n$  is similar.  $\Box$ 

Finally, we mention that some other problems from [1]-[11] can also be solved using the described method.

[NOV.

#### REFERENCES

- 1. K. Atanassov, L. Atanassova, & D. Sasselov. "A New Perspective to the Generalization of the Fibonacci Sequence." *The Fibonacci Quarterly* 23.1 (1985):21-28.
- 2. K. Atanassov. "On a Second New Generalization of the Fibonacci Sequence." The Fibonacci Quarterly 24.4 (1986):362-65.
- 3. K. Atanassov. "On a Generalization of the Fibonacci Sequence in the Case of Three Sequences." *The Fibonacci Quarterly* **27.1** (1989):7-10.
- 4. K. Atanassov, J. Hlebarova, & S. Mihov. "Recurrent Formulas of the Generalized Fibonacci and Tribonacci Sequences." *The Fibonacci Quarterly* **30.1** (1992):77-79.
- 5. P. Georgieu & K. Atanassov. "On One Generalization of the Fibonacci Sequence. Part V: Some Examples." *Notes on Number Theory and Discrete Mathematics* **2.4** (1996):8-13.
- P. Georgieu & K. Atanassov. "On One Generalization of the Fibonacci Sequence. Part VI: Some Other Examples." Notes on Number Theory and Discrete Mathematics 2.4 (1996):14-17.
- J. Z. Lee & J. S. Lee. "Some Properties of the Generalization of the Fibonacci Sequence." *The Fibonacci Quarterly* 25.2 (1987):111-17.
- 8. A. Shannon & R. Melham. "Carlitz Generalizations of Lucas and Lehmer Sequences." *The Fibonacci Quarterly* **31.2** (1993):105-11.
- 9. W. Spickerman, R. Joyner, & R. Creech. "On the (2, F) Generalizations of the Fibonacci Sequence." *The Fibonacci Quarterly* **30.4** (1992):310-14.
- W. Spickerman, R. Creech, & R. Joyner. "On the Structure of the Set of Difference Systems Defining (3, F) Generalized Fibonacci Sequence." The Fibonacci Quarterly 31.4 (1993): 333-37.
- 11. W. Spickerman, R. Creech, & R. Joyner. "On the (3, F) Generalizations of the Fibonacci Sequence." *The Fibonacci Quarterly* 33.1 (1995):9-12.

AMS Classification Number: 11B39

4<sup>0</sup>4 4<sup>0</sup>4 4<sup>0</sup>4