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1. INTRODUCTION 

There is no known simple form for the following summations: 

F. = I j . ^ = 1 ^ - , and K w = £ — ^ . 0) 
n=l rn «=1 -*/! «=1 rnrn+l 

It is our purpose to show that all other indefinite summations of reciprocals of products of 
Fibonacci numbers can be expressed in terms of these forms. More specifically, we will give an 
algorithm for expressing 

N j 
SN(al,a2,...>ar) = YJ-r-y — — (2) 

n-\ n+ax"n+a2 n+ar 

and 

TN(aua2,...,ar) = t F
H)"..F & 

n=\ n+ai"n+a2 n+ar 

in terms of ¥N,GN, and [K^, where a1?a2,...,ar are distinct integers. Since al,a2,...,ar are 
constants, these symbols may appear in the limits of the summations, but it is our objective to find 
formulas in which N does not appear in any of the summation limits. 

Expressions of the form SN(au c^,..., ar) and TN(ah a2, ...,ar) will be called reciprocal sums 
of order r. Those of the second form are also called alternating reciprocal sums. 

Without loss of generality, we may assume that the a, are ordered so that ax <a2 < ••• <ar. 
Furthermore, we may assume that ax = 0, because a change of the index of summation allows us 
to compute those sums where ax & 0. For example, if ax > 0, then we have 

SN(al,a2,...,ar) = SN+ai(0,a2-ah..^ar-al)-Sai(0,a2-ah..^ 

2. REDUCTION FORMULAS 

We start by showing that reciprocal sums of order r can be expressed in terms of reciprocal 
sums of order r - 2 for all integers r > 2. 

The following identity is easily proved (e.g., by using algorithm F i b S i m p l i f y from [8]). 

Theorem 1 (The Partial Fraction Decomposition Formula): 
Let a, b, and c be distinct integers. Then, for all integers n, 

-J=2L— = -A-+JL+JC-, (4) 
F F" F" T? J? F? 
rn+arn+brn+c rn+a rn+b rn+c 

where 
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A- (-D° B- (-D6
 and c - (-Dc

 m 
-1 o-a r c-a -* c-bA a-b A a-cx b-c 

Theorem 2 (The Reduction Algorithm): If r >2, then any reciprocal sum of order r can be 
expressed In terms of reciprocal sums of order r - 2. 

Proof: If f(n) is any expression Involving «, we see from Theorem 1 that 

y 1 = y A(-l)" , y *(-!)" . y C(-l)" _ 
+bFn+c 

with 4, 5, and C as given in equation (5). If f(n) is the product of r - 3 factors, each of the form 
Fn+C, then this shows that a reciprocal sum of order r can be expressed in terms of reciprocal sums 
of order r-2 for any integer r > 2. (If r = 3, then f(n) = 1.) Note that / («) may contain (-1)" 
as a factor to allow us to handle alternating reciprocal sums. • 

Since we can repeatedly reduce the order of any reciprocal sum by 2, this shows that any 
reciprocal sum can be expressed in terms of reciprocal sums of orders 1 and 2. 

3. RECIPROCAL SUMS OF ORDER 1 

Any reciprocal sum of order 1 differs by a constant from expressions of the form ¥N+C or 
GN+C. Specifically, if a > 0, then 

N i a+N i a \ 

I-F-=I-jF-l£ = F*«-F. (7) 
«=1 rn+a n=\ n n=l n 

and 
N ( X\n a+N / -|\» a / -i\« 

E^-E^-I^-^-G,. (8) 
n=\ rn+a n=l n n=\ n 

Thus, reciprocal sums of order 1 are readily computed in terms of F's and G's. 

4. ALTERNATING RECIPROCAL SUMS OF ORDER 2 

As has been pointed out, for reciprocal sums of order 2, we may assume that the denomi-
nator is of the form FnFn+a with a > 0 for if not, the reciprocal sum differs by only a finite number 
of terms from one of this form. 

There are two cases to consider, depending on whether the reciprocal sum Is alternating or 
not. 

In the alternating case, an explicit closed form can be found. The following result was proven 
by Brousseau [3] and Carlitz [5]. 

Theorem 3 (Computation of Alternating Reciprocal Sums of Order 2): If a > 0, then 
N 

«=1 A n1 n+a 

(-1)" _ l a p a p 

X rj-l y rj+N-l 

/ = ! PJ J=l Pj+N 
(9) 

Good [6] has found a different, but equivalent, expression for this reciprocal sum. He has 
shown that for a > 0, 
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y (-D" =FNf (-1)" 
F F 

n=\ rnrn+a 
Another equivalent formulation is the following. We omit the proof. 

£* F F 
nx=\ * nr n+a 

a F a F 
E 1 j+\ \^ A J+N+l 

F *-* F 
7=1 rj 7=1 rJ 

j+N 

(10) 

( i i ) 

5. NONALTERNATING RECIPROCAL SUMS OF ORDER 2 

We start with a preliminary result. 
Theorem 4: Let H„ be any sequence of nonzero terms that satisfies the recurrence H„+2 - H„+l + 
H„. Ifb>0, then 

f 1 = 1 1_ 
w=l ^n+b^n+b+2 ^b+Y^b+2 ^N+b+fii 

(12) 

Proof: We have 

# fl+fr+1 

N+b+2 

Hn+b+2 **n+b 

"n+b^n+b+2 ^n+b^n+b+l^n+b+2 ^n+b^n+b+Y^n+b+2 

1 1 
H„.hH„. ii„,h,irir,. ln+b11n+b+\ 11n+b+\11 n+b+2 

Summing from 1 to N, we find that the right side telescopes, and we get the desired result. D 

Theorem 5: For a > 0, let 
F"(a) = i-Fir-- (13) 

«=1 rnrn+a 

If we can find a closed form expression for ¥N(a-2), then we can also find a closed form expres-
sion for ¥N (a). 

Proof: The following identity is well known (see equation (9) in [3]): 

FaFn,a-2-Fa~2Fn+a = i-^Fn. (14) 

Thus, we find that 
1 a-2 (-1)" 

^n^n+a ^n^n+a-2 ^n+a-2^n+a 

N 

If we now sum as n goes from 1 to N, we get 

FJFN(<*)-Fa-2¥N("-2) = (-i)aX 

Applying Theorem 4 gives 

FJFN(a)-Fa_2¥N(a-2) = (-iy 

Solving for fN{a) gives 

n-l ^n+a-2^n+a 

l 
Fa-\Fa -fV+a-l-^V+o 

(15) 
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1 
Fa-lFa FN+a-lFN+a 

which shows that we can find ¥N(a) if we know ¥N(a - 2). D 

By induction, we see that any expression of the form 
N 1 

n=l * nx n+a 

with a > 0, can be expressed in terms of either 

y_L__ 
n=l A n1 n+l 

N 

or I 
n=\ ^n^n+2 

(16) 

The first form is known as IK^. The second form is easily evaluated by setting b - 0 in Theorem 
4 to get 

N i i 

y l =\- l 
n=\ ^n^n+2 FN+lFN+2 

(17) 

We have just shown how to find a formula for any reciprocal sum of order 2 in terms of Kn. 
We can also find a more explicit formula. If we let a = 2c +1 in formula (15), we get 

F2c+l¥N(2c +1) - F2cJF„(2c -1) = (-1): 2c+l 1 1 
.^2c^2c+l ^N+2c^N+2c+l. 

(18) 

Now sum as c goes from 1 to a. The left side telescopes, and we get 

c=l 

so that 

FN+2c^N+2c+l ^2c^2c+l. 

N * i f a 

F F W 
c=l 

1 1 
FN+2cFN+2c+l F2cF2c+l. 

Similarly, if a = 2c, we can sum as c goes from 1 to a to get 

N l l 
F F T? ^ 

n=\ rnrn+2a r2a c=l 

1 
F2c-lF2 2c * N+2c-V- N+2c J lFN 

(19) 

(20) 

We can summarize these results with the following theorem. 

Theorem 6: If a is a positive integer, then 

1 
N 1 

y _±_=J 
^ FF • 
n=l * rr n+a 

-, La/2} f 

ra /=l 

a/2 

\-^N+2i^N+2i+l ^2i^2i+l 

1 )KN . 
+ -=—, ifaisodd, 

A, 

17 2-r 17 77 
1 

-ffl /=! \F2i-lF2i FN+2i-lFN+2i 
if a is even. 

(21) 
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These formulas give us the following values for ¥N(a) for small a: 

y 1 

Z^t p p 

N 1 
Z-f p p 
n-\ rr n+4 

y _ l _ 
n=\ 1 nl n+5 

N •• 

^-d F F 
n=l n n+6 

_ 1 
~ 2 

_ 1 
~ 3 

_ l[ 
~5[ 

_ 1 
8 

N+2* N+3 

1 
r FN+1FN+2 FN+3FN+4_ 

KN + 

143 

- + -
^N+2^N+3 ^N+4^N+5 

11 
30 

120 FN+1FN+2 FN+3FN+4 FN+5FN+6^ 

(22) 

(23) 

(24) 

(25) 

As N -> oo in formula (21), we get 

2 17 77 
»=1 rnrn+a 

1 1 L°/2-J 1 

c a /=! -* 2r 2/+1 
a/2 1 a / z 1 

J_Y_L_ 
p jLt p p 

if a is odd, 

if a is even, 
(26) 

where IK = l i m ^ ^ IKW. For small values of a, these formulas yield the results found by Brousseau 
in [3]. 

6. SUMMARY 

We have just shown that any reciprocal sum of order 1 can be expressed in terms of F^ and 
GN, and that any reciprocal sum of order 2 can be expressed in terms of KN. Thus, we can 
conclude that all reciprocal sums are expressible in terms of FN,GN, and KN. We also have 
presented a mechanical algorithm for finding all such representations. 

Open Question 1: Is there a simple algebraic relationship between Ln = Z^Li(l /£w) and any of 
F^G^andK*? 

Open Question 2% Can we find the value of £ ^ ( 1 / F%) ? 

7. G O I N G T O INFINITY 

If we take the limit as N goes to infinity, we can express many infinite sums in terms of 

F = STF, G = I ^ - , K = I^r-, L = Sf , and J = I ^ - . (27) 
w=l ^ n «=l rn n=l rnrn+l n=l ^n n=l ^n 

No simple expressions for these infinite sums are known; however, they have been expressed 
in terms of Elliptic Functions [4], Theta Series [7], [1], and Lambert Series [2]. 

For example, we get results of Brousseau [3], such as 

(-i)" = i 
F„ L FF 

n=l ± n* n+a 

Z^ p a 
(28) 
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and 
y 1 = 319 (¥ 4681605A 
hFnFn+iFn+2F„+,Fn^Fn+5Fn+6Fn+1Fn+% 163801, 13933920J- ^ ) 

Carlitz has also found some pretty results for certain r^ -order reciprocal sums in terms of 
Fibonomiial coefficients (see formulas (5.6); (5.7), and (6.7) in [5]). 

Open Question 3: Are any of F, G, K, I, J connected by a simple algebraic relation? 
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