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1. AIM OF THE NOTE 

The principal aim of this short note is to put into evidence a quite interesting property of the 
integers Mn given by the left-hand side of the Fibonacci characteristic equation 

x 2 - x - l = 0 (1.1) 
taken at integers. More precisely, let us define the odd numbers Mn as 

Mn : = n(n-l)-l = n2 -n-l (n> 2 an integer). (1.2) 

After establishing two marginal properties of the numbers Mn, we prove their main property: 
namely, for n > 3, their canonical decomposition does not contain primes of the form 10/i±3. A 
brief discussion on which numbers Mn are also Fibonacci or Lucas numbers concludes our note. 

2. MARGINAL PROPERTIES OF THE NUMBERS Mn 

Proposition 1: 
1 (mod 10) 
5 (mod 10) if « = 
9 (mod 10) 

2,4,7, or 9 (mod 10) 
3 or 8 (mod 10) (2.1) 
0,1,5, or 6 (mod 10). 

Proposition 1 can be proved by simply computing (1.2) modulo 10. 

Proposition 2: For n > 2, Mn is not divisible by 25. 

Proof: From (2.1), we see that, for Mn to be divisible by 5, one must have n = 5h + 3 (h=0, 
1, 2, ...). Consequently, from (1.2), we have M5h+3 = 25h2 + 25h + 5 = 5 (mod 25). 

3. MAIN RESULT 

Proposition 3: For n > 3, the canonical decomposition of Mn has the form 

M„ = 5'fltf, (3.1) 
fc=l 

where t is either 0 or 1 and pk is a prime of the form I0h±l with sk a nonnegative integer. In 
particular, the canonical decomposition of Mn does not contain primes of the form 10/? ±3. 

Remark: If Mn is a prime, then the statement of Proposition 3 and that of Proposition 1 coincide. 

Proof of Proposition 3: From (1.2) and Proposition 2, it is sufficient to prove that the 
incongruence 

n2-n-l^0 (mod 10A + 3) (10A + 3 a prime) (3.2) 
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holds true for all n. Let D (= 5) be the discriminant of the equation x2 - x -1 = 0. In [3, p. 223] 
it is shown how the solution of the congruence x2 - x -1 = 0 (mod q) (q a prime) is given by the 
solution of the congruence z2 = D (mod q). It follows that a sufficient condition for the incon-
gruence (3.2) to be satisfied is that the congruence z2 = 5 (mod 10/?±3) has no solutions. In 
other words, denoting by (ml p) (p an odd prime, /wan integer not divisible by p) the Legendre 
symbol, to prove (3.2) we have to prove that 

(5/10/i + 3) = - l . (3.3) 

To obtain (3.3), first use the reciprocity law for (mlp) (e.g., see [3, p. 322]), thus getting 

f(5/10/l + 3)(10/f+ 3/5) = (_l)(5-D/2-(10 +̂2)/2 = (_}y0h+2 
[(5/10/f-3)(10//-3/5) = (_l)(5-D/2<10A-4)/2 = (_lf0h-4 

whence 

(5/10/?±3)(10/? + 3/5) = l. (3.4) 

Then, on using the property (mlp) = m^p~1^2 (mod/?) (see [3, p. 315]), write 

(10// + 3/5) EE(10/I+3) ( 5 - 1 ) / 2 (mod 5) 

= (±3)2 = 9 = - l (mod 5) 

whence 

(10/i±3/5) = - 1 . (3.5) 

The validity of (3.3) follows necessarily from (3.5) and (3.4). • 

An Observation: At first sight, we were amazed at the relatively large number of prime Mn (cf. 
Sequences 179 and 1558 of [4]): we found 48 of them for 3</?<100 and 311 of them for 
3 <n < 1000, whereas it can be seen readily [2] that the expected number of primes in a set of 
1000 odd numbers randomly chosen in [3, 106] is 157. Actually, the fact that there are so many 
prime Mn is not surprising, for we know, from Proposition 3, that Mn is not divisible by 3 (or by 
7), and that most of the composite numbers are. 

4. A QUESTION ABOUT THE NUMBERS Mn 

(4.1) 

A computer experiment allows us to ascertain that, for 11</?<1010, no numbers Mn are 
Fibonacci or Lucas numbers. This experiment was carried out by seeking values of k for which 
the discriminant 4 i ^ + 5 (resp. 41^+5) of the equation n2 -n-l = Fk (resp. = Lk) is a perfect 
square. 

observed that 
M 2 = FX = F2 = Ly, 
M3 = F5, 
M, = L„ 

M6 = Lj, 

Ms = F\o> 
M10 = Fn 
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Question: Do there exist numbers Mn that are Fibonacci or Lucas numbers besides those given 
in (4.1)? 

Remark: By virtue of the identity 4L2£ + (-l)*8 = (2Lk)2 (see identities I15 and I18 of [1]), it is 
not hard to prove that Mn cannot equal an even-subscripted Lucas number. 
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