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1. INTRODUCTION 

Horadam [7], in a recent article, defined two sequences of polynomials Jn(x) and j„(x), the 
Jacobsthal and Jacobsthal-Lucas polynomials, respectively, and studied their properties. In the 
same article, he also defined and studied the properties of the rising and descending polynomials 
i^(x), rn(x), Dn(x)y and dn(x), which are fashioned in a manner similar to those for Chebyshev, 
Fermat, and other polynomials (see [2], [3], [4], [5], and [6]). 

The purpose of this article is to extend these results to the generalized Fibonacci and Lucas 
polynomials defined by 

U„(x,y) = xUn_l(x,y)+yU„-2(x,y) (»>2), (1.1a) 
with 

U0(x,y) = 0, Ul(x,y) = l, (l.lb) 

and 
V„(x,y) = xV„_l(x,y)+yV„_2(x,y) (n>2), (1.2a) 

with 
V0(x,y) = 2, Vl{x,y) = x: (1.2b) 

In Section 2, we will give some basic properties of the polynomials Un(x,y) and Vn(x, y), 
most of which are generalizations of those given in [7] for Jn(x) and jn(x). In Section 3, we will 
derive some new properties of Un(x, y) and Vn(x, y) concerning their derivatives, as well as the 
differential equations they satisfy. In the remaining sections, we will define and study the proper-
ties of the rising and descending diagonal polynomials associated with Un(x, y) and Vn(x, y), thus 
generalizing the results already known for Fibonacci, Lucas, Chebyshev, Fermat, and Jacobsthal 
polynomials. 

2. BASIC PROPERTIES OF UH(x, y) AND Vn(x, y) 
Binet Forms: 

Vn{x,y) = an
+(3\ 

where 
a+/? = x, aj3 = -y, 
a-ft = jA, A = x2 + 4y, 

2a = x + VA, 2/? = JC-VA. 
Simson Formulas: 

t/„+1(x, y)U„_x{x, y) - U2
n{x, y) = (-l)"/*"1, 

K+l(x, y)Vn_x{x, y) - V„\x, y) = (-\)"y"-lA. 
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Summation Formulas: 

t u<(x> y)=7T7ri[t/"+i(x'y)+yU"(x>y) ~1]> (26) 

i , ^ y ) = —^Z\lVnH(x,y)+yV„{x,y) + {x-2)l (2.7) 
o x-i-y A 

Important Interrelations: 

K(x, y) = Un+l(x, y)+yU„_1(*, y), (2-8) 
Vn(x,y) + xUn(x,y) = 2Un+l(x,y), (2.9) 
V„(x,y)-xU„(x,y) = 2yUn_l(x,y), (2.10) 
AU„(x,y) = Vn+l(x,y)+yVn_i(x,y), (2.11) 
AUn(x,y) = 2Vn+1(x,y)-xV„(x,y), (2-12) 
U2n(x,y) = Un(x,y)V„(x,y), (2.13) 
V2n{x,y) = VZ{x,y)-2{-y)», (2.14) 
F2„(X,JO = AU2„(x,y) + 2(-y)", (2.15) 
At/„2(x, j)+V„2(x, y) = 2Vln(x, y), (2.16) 
2Um+„(x, y) = t/m(x, ̂ )F„(x, j)+Fffl(x, j;)t/„(x, y), (2.17) 
2^m+„(x, 7) = VJx, y)V„(x, y) + AUm(x, y)Un{x, y). (2.18) 

All the above results from (2.4)-(2.18) may be derived using the Binet forms (2.1) and (2.2) 
or, alternately, using the earlier results of Horadam [8]. Most of these results are to be found in 
Lucas ([10], Ch. 18). Now we let X = a and Y = (3 in the following identities, where a and /? 
are given by (2.3), X and Y arbitrary: 

yn _yn i(n-l)/2] /̂  _ ~ i \ 

^Y~T= E H ) ^ r yXY)r{X + Y)"~^ («>0), (2.19) 

Xn + Yn= Y(~lY-Z-[ / )(XY)r(X + Y)n-2r (n>0). (2.20) 

We can then easily establish the following expressions for Un(x, y) and Vn(x, y). 
Closed Form Expressions: 

[(w-l)/2] / . x 
Um(x,y)= I r~r)x"-2r-y, (2.21) 

r=0 
[if/2] 

F«^^)=S^:("/J^-V (it >0). (2.22) 

It is seen from (2.21) and (2.22) that U2n(x,y) and V2n_l(x9y) are odd polynomials in x of degree 
(2n-l) and polynomials my of degree (w-1), while ^w+iC^j) a n^ ̂ 2n(x^y) a r e e v e n P°'y~ 
nomials in a: of degree 2n and polynomials in j ; of degree n. It may be mentioned that expres-
sion (2.21) for Un(x,y) has already been established by Hoggatt and Long [3]; however, the 
expression for Vn(x, y) is new. By letting x = 1 and y - 2x, we obtain the results of Horadam [7] 
for the polynomials Jn{x) and jn(x). 
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Hoggatt and Long [3] have shown that 

Un(x,y) = flU-2^coI^7^ (n>2). (2.23) 

Using a similar procedure, or by using the technique used by Swamy [11] in obtaining the zeros of 
Morgan-Voyce polynomials, we can show that 

Vn(x,y) = T\^-2^co{^7^ («>2). (2.24) 

We may now rewrite expressions (2.23) and (2.24) to express the polynomials Un(x,y) and 
Vn(x, y) in the product form. 
Product Form: 

[(»-l)/2]r fh VI 

Un(x,y) = x** n {x2+4^co%^Jj ^>2), (2.25) 

F„(x,j) = x 1 - ^ n | x 2 + 4 j c o s 2 ^ ^ ^ | (n>2), (2.26) 

where 
fl if?? is even, 

S„ = \ (2.27) 
0 if n is odd. 

By letting x = 1 and y - 2x in (2.26) and (2.27), we get the zeros of the Jacobsthal polyno-
mials J„(x) and jn(x) to be, respectively, 

and 

x = - | s e c 2 f e j , k = l,2,...,(n-l\ (2.28) 

X = ~bQCi^br7r^ k = l,2,...,n. (2.29) 

The generating functions for U„(x9 y) and Vn(x, y) are given below. 
Generating Functions: 

U(x, y, t) = £ U,(x, y)rl = {1 - t(x+yt)yi, (2.30) 

V(x,y,t)=fiV,(x,yy=(2-xt){l-t(x+yt)}-1 (2.31) 
/=1 

= l + (l+ytz){l-t(x+yt)}-1 (2.32) 

3. DERIVATIVE PROPERTIES 

From (2.30), (2.31), and (2.32), a number of relations involving the derivatives of Un(x,y) 
and Vn(x,y) may be derived. However, only the following derivative relations are listed here. 
Throughout this section, where not explicitly mentioned, U, V, U„, and Vn stand for U(x,y,t), 
V(x, y, 0 y Un(x, y), and Vn(x, y), respectively. We can prove that 
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f=<fet/>, (3.0 

f-'f- C3.3, 
f"'f^- <"> 

*^— \-2y-z- = t—r-, (3.5) 
dx * dy dt" v ' 
dV^ dV tdV n ~ 

xl*+2ylf = t-a- (36) 

The above results are now established. From the generating function (2.30), we have 
IdU ^ 1 <37= 1 #U = U2 (37) 
t dx t2 dy x + 2yt dt ^ ' ' 

We see that (3.3) and (3.5) follow directly from (3.7). Now, from (2.32) and (2.31), we have 

W_ = t{\+yt2)U\ (3.8a) 

^ = t2(2-xt)U\ (3.8b) 

However, 
%U) = (l+yt2)U2, (3.9a) 
df 

-?-(t2U) = t(2-xt)U2. (3.9b) 

Relation (3.1) follows directly from (3.8a) and (3.9a), while (3.2) follows directly from (3.8b) and 
(3.9b). Also, from (3.8a) and (3.8b), we have 

x ^ + 2y^ = t(x-xyt2
+4yt)U2=t^, 

dx ' d y v * * J dt' 
thus establishing (3.6). Finally, we have, from (3.8a), 

t2U + t ^ = t2(l-xt-yt2)U2 + t2(l+yt2)U2 

= t2(2-xt)U2=^r, using(3.8b). 
dy 

Thus, relation (3.4) is established. Using the above relations (3.1) to (3.6) and the generating 
functions for U(x,y,t) and V{x,y,t) given by (2.30) to (2.32), we can obtain the following 
relationships, where the primes indicate partial derivatives with respect to x and dots those with 
respect to y: 

V>(x,y) = nUn(x,y), using (3.1), (2.30), and (2.31), (3.10) 
Vn(x,y) = nUn_l(x,y), using(3.2), (2.3), and (2.31), (3.11) 
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Un+l(x, y) = Ufa, y), using (3.3) and (2.30), 
or from (3.10) and (3.11), (3.12) 

nVnJ*,y) = {n + \)Vfa,y), using (3.10) and (3.11), (3.13) 
V„+l(x, y) = Vfa, y) + Ufa, y), using (3.4), (2.30), and (2.31), 

or from (3.10) and (3.13), (3.14) 
xUfa,y) + 2yUfa,y) = (n-l)Ufa,y), using (3.5) and (2.30), (3.15) 
xVfa,y) + 2yVfa,y) = nVfa,y), using (3.6) and (2.31). (3.16) 

We shall illustrate the procedure for proving the above results by establishing (3.12) and 
(3.16); the other results may be established in a similar manner. Substituting (2.30) and (2.31) in 
(3.3) and (3.6), respectively, we get: 

ftUlXx,y)f-l = tfiai(x,y)t'-1; 
1 1 

xfvfa, y)t + 2yfjVi{x, yY = tj^iVfa, y)t'-\ 
0 0 1 

Comparing the coefficients of like powers of t on both sides of the above equations, we obtain 
(3.12) and (3.16), respectively. 

Using the results of (3.12) and (3.13), we may now derive the following relations for the 
higher-order derivatives of Un(x, y) and Vn(x, y), where D^ and D^ denote the derivatives with 
respect to x mdy, respectively. 

DyUn+1(*, y) = D?Un_r+l{x, y), (3.17) 

(n~r + l)D^Vn+1(x,y) = (n + l)D^Vn_r+l(x,y). (3.18) 

We will now derive the linear differential equations satisfied by Ufa, y) and Vfa, y). From 
(2.12), we have MJn_x + 4Un_x = 2Vn - xV„_x. Hence, 

^AF„+4C/„_, =2nU„_l-x(n-l)U„_2, using (3.11), 

= 2nU„_l-(n-l)[2U„_l-V„_2], using (2.9) 

= 2U„_l + (n-l)(AUn_l-Vn)/y, using(2.11). 
Therefore, 

yAVn + ily-in-mnU^+nin-W^O. (3.19) 

Substituting (3.11) in (3.19), we see that V„(x, y) = z satisfies the differential equation given by 

y(x2+4y)z+{2y-(n-l)(x2+4y)}z+n(n-l)z=0. (3.20) 

Differentiating (3.19) again with respect toy and again making use of the result (3.11), we get 

y(x2 +4y)nU„_l + {6y-(n-2)(x2 + 4y)}nUn_l + (n-2){n-3)nUn_l = 0. 

Now, replacing (w-1) by n, we see that Un(x, y) = z satisfies the differential equation 

y(x2+4yYz+{6y-(n-l)(x2+4y)}z+(n-l)(n-2)z=0. (3.21) 
Since the Jacobsthal polynomials [7] J„(x) and jn(x) are given by 
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Jn{x) = Un{\ 2x) and jn(x) = Vn(\ 2x), (3.22) 

we see, from (3.21), that Jn(x) satisfies the differential equation 

x(Sx + l)z"-{4(2n-5)x + (n-l)}z' + 2(n-l)(n-2)z=0, (3.23) 

while, from (3.20), we see that jn(x) satisfies the equation 

x(8x + l)z"-{4(2n-3)x+(n-l)}z' + 2n(n-l)z = 0. (3.24) 

Recall that y = 2x implies that z = jz' and z-^z". 
In a similar way, differentiating both sides of (2.11) with respect to x, and utilizing (3.10), 

(2.8), and (1. la), we can show that Vn(x, y) satisfies the equation 

(x2+4y)z"+xz'-n2z = 0. (3.25) 

Differentiating (3.25) with respect to x once and making use of (3.10), we see that U„(x,y) 
satisfies the equation 

(x2+4y)z"+3xz' + (l-n2)z=0. (3.26) 

It should be noted that equations (3.25) and (3.26) appear in [1] as equations (1.11) and (2.6), 
respectively, in a slightly varied notation. It should also be noted that, after the submission of this 
article, an article by Horadam [9] appeared generalizing the results given in (3.20), (3.21), (3.25), 
and (3.26). 

Also, from (3.11) and (1.2), we can show that 

K(^y) = ^K-l(x,y)+-f^yK-2(^y) (»*3), (3.27a) 

while, from (3.10) and (1.2), we can prove that 

v&*>y)=^xVU*>y)+-^2yvu(*,y) («^3) (3 2 8 a) 
Thus, we see that both Vn(x, y) and VJ(x, y) satisfy the same recurrence relation, but with differ-
ent initial conditions as given by 

Vl(x,y) = 0, V2(x,y) = 2, (3.27b) 
V/(x,y) = l, V{(x,y) = 2x. (3.28b) 

4. RISING DIAGONAL POLYNOMIALS 

Let us first consider the rising diagonal polynomials R„(x, y) associated with U„(x,y); these 
polynomials are formed the same way as the rising diagonal polynomials associated with Fermat, 
Chebyshev, Jacobsthal, and other similar polynomials (see [2], [4], [5], [6], and [7]). Thus, from 
(2.21), we see that B0(x,y) = 0, Rl(x,y) = l, R2(x,y) = x,..., 

3 + -R.(x,y) = X-1
 + ( " - 3 ) x - v ( " 2 5 ) * - y +("3 ^ y 

The above may be rewritten as 

^ ( x , j ) = x"-1
 + ["-1

]-2-1]x«-1-3V + [ w - 1
2 - 2 - 2 ]x"- 1 - 3 V-f 
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+ fn-l-2-3\x„+>3y3+ + 

V it] J 
yU\ 

Hence, 

K(x,y)= Z • Y^y (n>\), Bo(x,y) = 0. (4.1) 

Similarly, starting with (2.22), we may show that the rising polynomials rw(x, y) associated with 
Vn(x, y) are given by 

[«/3] _ . / _n-\ 
rr,(x,y)=Tfzk{" i )x"~3<y' ( " ^ ) , r0(x,y) = 2. (4.2) 

We now derive some interesting relationships for these rising polynomials including the 
recurrence relations. From (4.1) and (4.2), we have 

/ \ , o / \ v n~J (n-2i\ n-3i i , \ ? 1(n-l-2i) „-3i i 

= 2Z(n 2l)x"-*y=2R„+l(x,y). 
/=o' 

Hence, 
rn(x, y) + x^(x, y) = 2i^+1(x, y). (4.3) 

Similarly, we can show that 
rn(x,y)-xRn(x,y) = 2yRn_2(x,y) (n>2). (4.4) 

Hence, from (4.3) and (4.4), 

rn(x, y) = ^+i<X y)+yRn-i(x, y) (n * 2l (4 5) 
i^+1(x, y) = xR„(x, y)+yRn.2(xy y) (n>2). 

Thus, we see that R„(x, y) satisfies the recurrence relation 

Rn{x9y) = xRn_l{x9y)+yRn_,{x9y) (n>3\ (4.6a) 
with 

Ro(x,y) = 0, Rl(x,y) = l, R2(x,y) = x. (4.6b) 

Similarly, using (4.3), (4.4), and (4.5), we can deduce that rn(x, y) satisfies the recurrence relation 

rn(x9 y) = xr„_x(x9 y)+yr„_3(x, y) (n > 3), (4.7a) 

with 
r0(x,y) = 29 rl(x,y) = x9 r2(x,y) = x2. (4.7b) 

It is interesting to compare the relations (4.6), (4.7), (4.5), (4.3), and (4.4) with their counter-
parts for Un(x,y) and V„(x,y) given, respectively, by (1.1), (1.2), (2.8), (2.9), and (2.10). 

The generating functions for R„(x, y) and rn(x, y) may be found by following the usual tech-
nique. They are given by 

R(*> y> 0 = i ^ t e - v y - 1 = {l-t(x + yt2)y\ (4.8) 
/=i 
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r(x,y, t) = %{x,yy = {2-xt){\-t{x+yt2)Yx (4.9) 
7=0 

= l + (l+yt3){l-t(x+yt2)}~\ (4.10) 

Using these generating functions, we may now derive a number of results concerning the 
derivatives of i?(x, y, i) and r (x, y, t) where, for the sake of convenience, R and r are used for 
i?(x, y, i) and r (x, y, i). A few of these results are: 

§-«•§• 

A3 j , f = ,f§, (4.13) 
dx * dy dt v ' 
dr ^ dr ^dr /A , .x x*+3j,7r'*- (414) 

The above results may be established in a way similar to those given in (3.1) to (3.6). From the 
above results, we may derive the following relationships for the derivatives of Rn(x,y) and 
rn(x, y), where again the primes indicate partial derivatives with respect to x and dots those with 
respect to y: 

r„+2(.x,y) = rXx,y) + Rt,(x,y), (4.16) 
xR&x, y) + 3yR„(x, y) = (n- l)R„(x, y) (4.17) 

*r»(*, y) + 3yt(x, y) = nr„(x, y). (4.18) 
Again, it is interesting to compare the relationships (4.11), (4.12), (4.13), (4.14), (4.15), 

(4.16), (4.17), and (4.18) with their counterparts for U„(x, y) and V„(x, y), namely, the relations 
(3.3), (3.4), (3.5), (3.6), (3.12), (3.14), (3.15), and (3.16), respectively. 

5. DESCENDING DIAGONAL POLYNOMIALS 

Let us now consider the descending diagonal polynomials Dn(x, y) and dn(x, y) associated 
with the polynomials Un(x,y) and Vn(x, y), respectively; these are formed the same way as the 
descending diagonal functions associated with Chebyshev, Fermat, Jacobsthal, and other similar 
polynomials (see [2], [4], [5], [6], and [7]). Thus, from (2.21), we see that the descending poly-
nomial Dn(x, y) associated with Un(x, y) is given by 

D0(x,y) = 0, Dl(x,y) = \, D2(x,y) = x + y,..., 

A(*,J') = (woV1 +(^1)x , r f j '+ '"+(»=Oy"1 = (x+J'rl-
Hence, 

D„(x,y) = "£(nTl)x"-l-y = (x+yrl (n>l), D0(x,y) = 0. (5.1) 
7=0 ^ ' 
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Similarly, starting with relation (2.22), we can obtain the descending polynomial dn(x, y) 
associated with the polynomial Vn(x, y) to be 

dn(x,y) = i~-(i)x"-y (n>\), d0(x,y) = 2. (5.2) 

Now consider 

Hence 
dn(x,y) = Dn+l(x,y)+yDH(x,y) (n>l). (5.3) 

Thus, 
dn(x,y) = (x + 2y)(x+yy-1 (n>l). (5.4) 

We also have, from (5.1) and (5.4), 

^A=d^x^=x } (55) 
D„(x,y) dn(x,y) 

d„+1(x,y)+yd„(x,y) = (x + 2y)2Dn(x,y) («>1). (5.6) 

We may also formulate the following generating functions for the descending polynomials 
Dn(x, y) and dn(x, y) by following the usual procedure: 

D(x, yj) = T Di(x> yy~l = il~ (x+yWl, (5-7) 

1=1 

d(x,y,t) = fjdi{x,y)t>-' = {x + 2y){\-{x+y)ty\ (5.8) 
From the above generating functions, we may deduce the following relations for the derivatives of 
D(x, y, t) and d(x, y, i) where, for the sake of convenience, D and d are used for D(x, y, t) and 
d(x,y,t): 

dD = dD 
dy~ dx' (5.9) 

f = f + Z>, (5.10) 
ay ox 

— + 
dx +y dy ' dt ' 
dd dd dd 
dx dy dt 

dD_ = 
dy {x+}jdx ' a 
dd_ dd_ 
dyX~ a 
dd dd 

i — = t-— 

dy a 
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Using the above relations, we may write the corresponding interrelations for the derivatives 
of the polynomialsZ)n(x, y) and dn(x, y) with respect to x andy as has been done for i^(x, y) and 

6. CONCLUDING REMARKS 

We have generalized all the known results concerning the diagonal functions associated with 
Fibonacci, Lucas, Chebyshev, Fermat, Pell, and Jacobsthal polynomials to the case of diagonal 
functions associated with the generalized polynomials given by (1.1) and (1.2). We have also 
derived a number of new interesting results concerning the derivatives of Un(x, y) and Vn(x, y) 
with respect to y, the differential equations satisfied by these polynomials, as well as the inter-
relations between their derivatives with respect to x and y. Similar results have also been derived 
for both the rising and the descending diagonal polynomials associated with Un{x, y) and Vn(x, y); 
however, we have not been able to find the differential equations satisfied by i^(x, j /) , rn(x,y), 
and dn(x,y) with respect to either x or y. It may also be observed that the descending (rising) 
polynomials associated with the rising (descending) polynomials of Un(x, y) and Vn(x, y) are, 
respectively, Un(x,y) and Vn(x,y). This answers one of the questions raised by Horadam [7] 
regarding the rising polynomials of the descending polynomials of J„(x) and jn(x) as well as the 
descending polynomials of the rising polynomials of Jn(x) and jn(x). 

ACKNOWLEDGMENT 

The author would like to thank the anonymous referee for many valuable comments and sug-
gestions that have enhanced the quality and presentation of this article 

REFERENCES 

1. R. Andre-Jeannin. "Differential Properties of a General Class of Polynomials." The Fibo-
nacci Quarterly 33.5 (1995):453-58. 

2. D. V. Jaiswal. "On Polynomials Related to Tchebichef Polynomials of the Second Kind." 
The Fibonacci Quarterly 12.3 (1974):263-65. 

3. V. E. Hoggatt, Jr., & C. T. Long. "Divisibility Properties of Generalized Fibonacci Polyno-
mials." The Fibonacci Quarterly 12.2 (1974): 113-20. 

4. A. F. Horadam. "Diagonal Functions." The Fibonacci Quarterly 16.1 (1978):33-36. 
5. A. F. Horadam. "Chebyshev and Fermat Polynomials for Diagonal Functions." The Fibo-

nacci Quarterly 17.4 (1979):328-33. 
6. A. F. Horadam. "Extensions of a Paper on Diagonal Functions." The Fibonacci Quarterly 

18.1 (1980):3-8. 
7. A. F. Horadam. "Jacobsthal Representation Polynomials." The Fibonacci Quarterly 35.2 

(1997): 137-48. 
8. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of Numbers." The 

Fibonacci Quarterly 3.3 (1965): 161-76. 
9. A. F. Horadam. "Rodrigues' Formula for Jacobsthal-Type Polynomials." The Fibonacci 

Quarterly 35.4 (1997):361-70. 
10. E.Lucas. Theorie desNombres. Paris: Blanchard, 1961. 
11. M. N. S. Swamy. "Further Properties of Morgan-Voyce Polynomials." The Fibonacci 

Quarterly 6.2 (1968): 167-75. 

AMS Classification Numbers: 11B39, 33C25 

222 

< • • • > 

[AUG. 


