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1. AIM OF THE PAPER 

Here we extend a result established by Rabinowitz [6] by considering the fifth-degree polyno-
mials of the so-called Bring-Jerrard form q(x, h,k): = x5 ±h2x -k, where h is either 1 or a prime, 
and k is an integer. More precisely, the principal aim of the paper is to find necessary and suffi-
cient conditions on k for q(x, h, k) to factor over Z. 

Since q(x, h, k) factors trivially as 

x5 ±h2x-(m5 ±h2m) = (x-m)(x4 +mx3 +m2x2 +m3x-+m4 ±h2) (1.1) 

if k - m5 ± h2m (weZ) , we are concerned with the factorizations of q(x, h, k) that have the form 

q(x,h,k) = (x2 +ax + b)(x3-ax2 +cx+d) (a,b,c,d eZ). 0-2) 

The case h- 1 has been solved brilliantly by Rabinowitz in [6] (see also [3] and [9]), where 
he shows that q(x,l, k) has the factorization (1.2) iff & assumes some special values depending on 
square Fibonacci numbers. In the more general situation (h a prime), certain properties of the 
Fibonacci (and generalized Fibonacci) numbers play a crucial role as well. 

After observing that changing the sign of k implies nothing but the sign change of a and d in 
(1.2), we can assume that k > 1 without loss of generality. Consequently, we shall confine our-
selves to studying the factorization (1.2) of the polynomials 

f r(x,p,k) = x5-p2x-fc, 
(k >1, /?a prime). (1.3) 

$(x, p, k) = x* + plx -k, 
As will be shown in the sequel, it is necessary to distinguish three cases depending on 

whether the prime p is either 5, or has the form 5/ ±2, or the form 5/ ± 1. Our approach to this 
problem will follow [3] and Rabinowitz' argumentation but, to render the paper self-contained, the 
proofs will be given in full detail. For the sake of completeness, the most significant factorizations 
will be explicitly shown. A brief discussion on the factorization of r(x, p, k) for certain special 
primes/? concludes our study. 

It must be noted that some questions remain unsettled that are related to well-known open 
problems in number theory. Namely, they concern the existence of infinitely many prime Fibo-
nacci numbers, the occurrence of perfect squares in terms of Fibonacci-like sequences, and the 
solution of a special Pell equation. 

A preliminary version of this paper has been presented by the first author at the XIV Oster-
reichischer Mathematikerkongress [4]. 
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.2. PRELIMINARY RESULTS 

Given the factorization (1.2), by equating the coefficients of like powers of x we obtain the 
system 

(b + c-a2 = Q, 
U-c)-^0, 
]ad+hc = ±p2, K ' } 

whence, by using the first two equations to eliminate a and d, we obtain the two equations 

(b2+hc-c2 = ±p2, 
\h2(h-c)2(h + c) = k2. K ' } 

Equations (2.2) show that the couple (&, c) must be chosen among the couples that represent 
±p2 by means of the quadratic form Q(b,c) = b2 + bc-c2, subject to the condition that b + c is a 
perfect square. Hence, finding the solutions of the quadratic equation Q(b,c) = ±p2 is clearly a 
necessary step to solve our problem. From Gauss's general theory of the quadratic forms, it is 
known (e.g., see [5]) that there is a finite number of classes of solutions. Each class consists of an 
infinitude of solutions which are referred to as associated solutions, and is characterized by a 
single solution called the fundamental solution. The classification of the solutions of Q(b, c)- M 
is given by Dodd in [2]. It depends on the peculiar properties of Z(a), the ring of integers in the 
quadratic field Q(a) which is the extension of the rational field Q by means of the golden section 
a = (1 + V5) / 2. Recall that Z(a) is a unique factorization domain. 

Every solution (x„, yn) of Q(h, c) = M, associated to a given fundamental solution (x0, y0), is 
obtained as 

xn + ayn = a2n(x0 + ay0). (2.3) 

Equivailently, we can say that both the sequences {xn} and {yn} are generalized Fibonacci 
sequences obeying the second-order recurrence 

GM = G„_1+G„_2, (2.4) 

with suitable initial conditions G0 and Gv The number of classes of solutions is obtained as a con-
sequence of Theorem 3.12 and Corollary 3.13 of [2] that we quote as a single theorem for ease of 
reference. 

Theorem 1 (Dodd): The quadratic equation x2 + xy- y2 = M is solvable in Z iff 

M = ±5fpYx - • • p2fsqfl --qfr (t,ft, gt nonnegative integers), 

where pt = Sj±2 (\<i <s) and qi =5j±l (1 </ <r) are primes. The number of fundamental 
solutions is given by the product (gx + l)(g2 +1) • • • (gr +1). 

Consequently, for our special case M = ±p2 [see (2.2)], we can summarize the above results 
as follows. 
(i) If p = 5 or 5j±2, then there is a unique fundamental solution 

( W o ) = W WM=-P\ (25) 
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(ii) If p = 5j±l, then there are three fundamental solutions, one of which is given by (2.5). The 
additional solutions (x$\yP) and (x^\y^) can be derived from a solution (uQ, v0) of the Pell 
equation u2 -5v2 = p. Namely, we have 

\4l) = «o ~2"ovo + 5vo, J4 2 ) = «o + 2w0v0 + 5vl M_n2. (~ * 
k } = 4Wov0; U2> = -4«0v0, *"-P, C2.6) 

l l n = 4r°' 2 K = -4W' ifM = -^. (2.7) 

Apparently, there is no direct technique for solving the Pell equation u2 -5v2 = p; the best 
known method (see [5], p. 206) is to check every u lying within the interval [yjp + 5, -Jfp]. 

3. THE FACTORIZATION OF r(x, p, k) WHEN p = 5j±2 

We state the following theorem. 

Theorem 2: If p = 5j±2, then the polynomial r(x, p, k) given by (1.3) factors as (1.2) iff 

_ | 2 , and k = 96 or 11424, 
P~\ 3, and k = 27 or 2808. * " ' 

(3.2) 

Proof: The system (2.2) becomes 

jbc + h2-c2 = -p2, 
\b2(b-c)2(b + c) = k2. 

Since the couple (0,p) is the fundamental solution [see (2.5)] of Q(b,c) = -p2, from (2.3) 
we know that all the solutions are given by 

(b,c) = ±(pFln,pF2n+l) (neZ), (3.3) 

where Fn is the 72th Fibonacci number. We recall that F_n - (-l)n+lFn. 
From (3.3) and the second equation of (3.2), we see that 

k2=p*F2
nF2

n_x{±pFln,2), (3.4) 

where the minus sign in the last factor must occur iff n < - 1 . From (3.4), it is plain that, for k to 
be an integer, pF2n+2 must be a perfect square. In turn, this implies that we must have 

F2n+2=Py2. (3.5) 

For p = 2, Theorem 4 of [1] tells us that the only nonzero solution to (3.5) is F6 = 2-22 [i.e., 
y = 2 and n - 2 in (3.5)]. Consequently, letting n - p - 2 in (3.4) yields 

k = ^\6F2F2(2F6) = 96. (3.6) 

Further, letting n = -4 in (3.4) (so that the last factor therein becomes -2F_6) yields 

k = ^\6F\F2
9(-2F_ 6) = 11424. (3.7) 
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For p > 3, Theorem 1 of [8] tells us that the unique solution to (3.5) is F4 = 3• l2 [i.e., p = 3, 
y = l, and n = 1 in (3.5)]. Hence, letting p = 3 and n = 1 in (3.4) yields 

k = ^\F2F2(3F4)=27. (3.8) 

Further, letting w = -3 in (3.4) (so that the last factor therein becomes -3F_4) yields 

k = ^81F2
6F2

7(-3F_4) = 2808. Q.E.D. (3.9) 

By using (1.2), (2.1), and (3.3), the factorizations of r(x, 2, k) and r(x, 3, &) for the above 
values of k are readily obtained. Namely, we get 

x 5 - 4 x - 9 6 = (x2 + 4x + 6)(x3-4x2 + 10x-16), (3.10) 

x5 - 4x -11424 = (x2 - 4x + 42)(x3 + 4x2 - 26x - 272), (3.11) 

x 5 - 9 x - 2 7 = (x2 + 3x + 3)(x3-3x2 + 6x-9) , (3.12) 

x 5 -9x-2808 = (x2-3x + 24)(x3+3x2-15x-117). (3.13) 

4. THE FACTORIZATION OF s(x, p, k) WHEN p = Sj ± 2 

We staite the following theorem. 
Theorem 3: If p = 5j ± 2, then the polynomial s(x9 p, k) given by (1.3) factors as (1.2) iff 

P - ^2n+ils a prime Fibonacci number, and k = < 3
 2" l 2" 2' (4.1) P3F2n-lF2n-2> 

P ^2n+3^2n+4' 

Remark 1: For F2n+l to be a prime, 2w + l must necessarily be a prime. The question of whether 
there exist infinitely many prime Fibonacci numbers is still unsolved ([7], p. 226). 

Proof: The system (2.2) becomes 

\bc + b2-c2 = p\ 
\h2(b-c)2(b + c) = k2. K ' } 

Since the couple (/?, 0) is the fundamental solution [see (2.5)] of Q(b, c) = p2, from (2.3) we 
know that all the solutions are given by 

(h,c) = ±(pF2„_l,pF2n) (neZ). (4.3) 

From (4.3) and the second equation of (4.2), we see that 

k2=P%UFl-2(pF2n+i), (4-4) 
where one can observe the absence of the minus sign in the last factor which is due to the fact that 
the odd-subscripted Fibonacci numbers are always positive. From (4.4), it is plain that, for k to be 
an integer, pF2n+l must be a perfect square. In turn, this implies that we must have 

F2n+i=py2- (4.5) 
Theorem 2 of [8] ensures us that, if p = 5j±2, then all the solutions to (4.5) are given 

(trivially) by 
F2n+i = P'l2- (4.6) 
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From (4.6), expression (4.4) becomes 

whence one immediately gets the first equality of (4.1). Since F_{2n+l) = F2rM, we can replace n 
by -(n +1) in (4.4), thus getting [see (4.6)] 

ki=p4F\n_,F}2n_A(pF2n+]) = p<>Fin+,Fl+A, (4.8) 

whence the second equality of (4.1) is readily obtained. Q.E.D. 

In the first and second cases of (4.1), the factorizations (1.2) of s(x, p, k) have the sets of 
coefficients 

a = P = F2„+v 
b = Pf- and 
d = ~P2F2n-2, 

a = -p, 
(4.9) 

b = PF2n+3, 
c = -pF2n+2, 

2n+4> d = -P% 

respectively. As a numerical example, the factorizations of s(x, 13, k) [n = 3 in (4.1)] are shown 
below. Namely, we have [cf. (4.9)]: 

x5 + 169x - 32955 = (x2 + 13x + 65)(x3-13x2+104x- 507), (4.10) 

X5 + 1 6 9 X - 4 1 0 8 3 9 0 = (X2-13JC + 442)(X3 + 1 3 X 2 - 2 7 3 X - 9 2 9 5 ) . (4.11) 

Remark 2: The case p - 5 is exceptional because 5 occurs in the definition of the quadratic 
extension ring Z(cr), but according to Theorem 1, it can be treated as the primes of the form 
5j±2. Equation Q(byc) = 52 has only one fundamental solution, and, according to the above 
discussion, we get the only possible factorizations: 

x5+25x-250=:(x2+5x + 10)(x3-5x2 + 15x-25), (4.12) 
x5+25x-34125 = (x2-5x + 65)(x3+5x2-40x-525). (4.13) 

5. THE FACTORIZATION OF r(x, p, k) WHEN p = 5j±l 

From Theorem 1, we know that, if p = 5j ± 1, then the equation Q(h, c) = -p2 has the three 
fundamental solutions 

l±(pF2n, pF2n+l\ 
(b,c)= ±(^w,^w + 1) , neZ, (5.1) 

l±(B2n,B2n+l), 
where the generalized Fibonacci sequences ( 4 J and {Bn} obey the recurrence (2.4) with initial 
conditions [AQ = x^; Ax - yfp] and [B0 = x^2); Bx =yQ2)] that can be obtained from (2.7). 

We now state the following theorem. 

Theorem 4: If p = 5j±l, then the polynomial r(x, p, k) given by (1.3) factors as (1.2) iff A2n 

and/or B2n are perfect squares for some n. 

Proof: On the basis of the previously used arguments [see (3.2)-(3.4)], from (5.1) it is clear 
that we must have 
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k2 = 

pAF2
nF2

n_x{±pF2n,2\ 

4,4*-i(±4«+2)> neZ. (5.2) 
B2nB2n-l(±B2n+2)> 

The equation ±F2n+2 = py2 [cf. (3.5)] has no solutions by virtue of Theorem 1 of [8]. There-
fore, the only possibilities for k to be an integer are that A2n+2 and/or B2n+2 are perfect squares for 
somew. Q.E.D. 

As a numerical example, let us find values of k for which r(x, 11, k) factors as (1.2). If 
p = 11, then (w0, v0) = (4,1) is a solution of the Pell equation at point (ii) of Section 2, so that 
expressions (2.7) give the initial conditions (4> = 16; Ax = 29] and [B0 = -16;B1 = 13]. From, (5.2) 
and the argument in the proof of Theorem 4 (namely, Theorem 1 of [8]), we have 

k2 = lA2n
AL-i(±A2n+2) (the minus sign when n < -3), 

\B2n
B2n-l(±B2n+2) ( t h e milUS s i g n w h e n n ^ °)-

For n = - 1 , we have that ^2W+2 = 4o = 16 is a perfect square. Letting ?i = -1 in the first 
equation of (5.3) yields 

* = A_2A_3^1% = 3 • 10-4 = 120. (5.4) 

For the same value of n, we see that B2n+2 = B0 = -16. Letting n = -1 in the second equation of 
(5.3) and choosing the proper signs yields 

* = -B_2B_3J-BQ= 45-74-4 = 13320. (5.5) 

Remark 3: The occurrence of further even-subscripted terms of {AJ and/or {Bn} that are per-
fect squares would allow us to find further values of k for which r(x, 11, k) factors as (1.2). 

The factorizations of r(x, 11, k) for the values of k given by (5.4) and (5.5) are 
x5-121x-120 = (x2+4x + 3)(x3-4x2 + 13x-40) (5.6) 

and 
x5-121x-13320 = (x2-4x + 45)(x3-f4x2-29x-296), (5.7) 

respectively. 

6. THE FACTORIZATION OF s(x9 p, k) WHEN p = 5j±l 

From Theorem 1, we know that, if p - 5/± 1, then the equation Q(b, c) = p2 has the three 
fundamental solutions 

l±(PF2n-l,PF2nl 
(hyc) = l±(A2^A2n+ll n e Z , (6.1) 

[H^m B2n+lX 

where the initial conditions for {An} and {BJ can be obtained from (2.6). 
Now, let us state the following theorem. 

Theorem 5: If p = 5j ± 1, then the polynomial s(x, p, k) given by (1.3) factors as (1.2) iff either 
(I) (4.1) is satisfied (with p = 5j±l) or (ii) Aln^l and/or B2n+l are perfect squares for some n. 
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N.B. There is a unique exception to point (i). Namely, s(x, 3001, k) factors as (1.2) for 
k = 68586998444168435635 or k = 8435643157247893914990. 

After observing that, on the basis of previously used arguments [see (4.2)-(4.4)], we must 
have 

[P^ln-lFln-lipFln+ll 

*2 = U2,4Li(±4,»2). " ^ (6.2) 

it is clear that the proofs of points (i) and (ii) are similar to those of Theorems 3 and 4, respec-
tively. Therefore, we shall confine ourselves to proving the exception to point (i) mentioned in 
the N.B. above. 

As an example of application of the last two equations of (6.2), we invite the reader to prove 
that s(x, 19, k) factors as (1.2) for k = 765 or 26390 or 37704147. 

Hint: After assuming that (% v0) = (12,5) is a solution to u2 -5v 2 = 19, use (2.6) to find 
[AQ = 149, 4 = 240] and [B0 = 389, Bx = -240], and observe that A_A =B6 = 25 and B20 = 2809 
are perfect squares. 

Proof of the Exception to Point (i): Theorem 2 of [8] tells us that the unique exception to 
(4.6) occurs when n = 12, p = 3001, and y = 5 in (4.5). If we let these values of n and p in the 
first equation of (6.2), then we get k2 = p^^F^ipF^) (p = 3001), whence 

k = 30012 F23F22 ̂ /300LF25 = 68586998444168435635. (6.3) 

Further, letting w = -13 and /? = 3001 in the same equation yields k2 = pAF2
21F2

2%(pF_25) 
(p = 3001), whence 

* = 30012F27F28^3001F25 = 8435643157247893914990. Q.E.D. (6.4) 

The factorizations of s(x, 3001, k) for the values of k given by (6.3) and (6.4) are: 

x 5 +9006001*- 68586998444168435635 
= ( X 2 + 1 5 0 0 5 X + 8 5 9 9 9 6 5 7 ) ( X 3 - 1 5 0 0 5 X 2 + 1 3 9 1 5 0 3 6 8 J C - 7 9 7 5 2 6 4 1 8 5 5 5 ) , 

and 

(6.5) 

x5 + 900600 lx - 8435643157247893914990 
= (x2-15005x + 589450418)(x3-fl5005x2-364300393x-14311030919055)? ( 6 6 ) 

respectively. 

7. CONCLUSIONS 

First, we wish to point out that the technique used in Sections 3-6 allows us to obtain the fac-
torization of fifth-degree polynomials that are similar to those considered in this paper. In every 
case, Fibonacci and Fibonacci-like sequences play a fundamental role, and suggest the existence of 
an even deeper connection between these sequences and the factorization of fifth-degree polyno-
mials. For example, it is not hard to prove that if 
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n5mF4F5, 
„5mi k = U2n>mF9Fw, (7.1) 

{\2n5mFl4F15, 

then the polynomials x5-n4mx-k (n,m eN) factor as (1.2) (for n = 1, cf. (3.8) of [3]). The 
proof of (7.1) is based on the well-known fact [1] that F2J is a perfect square iff j = 0,1, or 6. 
Further, the interested reader might enjoy using the above technique for proving that, if 

k = FfFJ±2FJ±3, (7.2) 

then the polynomials x5 - (-T)JF2x - k factor as (1.2). 
Then, let us conclude our study by considering a special class of primes p such that a couple 

(kx, k2) of values of k for which r(x, p , k) factors as (1.2) can be expressed merely in terms of/?. 
Namely, consider the set of all primes p such that p + 5 = z4 is a fourth power. Since z must be an 
even integer not divisible by 5, it can be readily proven that p has the form 5y + 1 . It is likely that 
there exist an infinitude of primes belonging to the above defined set. We found 15 of them 
within the interval [2,108], the smallest (resp. largest) being 11 (resp. 78074891). 

Theorem 6: If p > 251 is a prime such that 

p + 5 = z4 (7.3) 
is a fourth power, and 

kl2=4(j? + 5)l/4[p2+44p±lO(p + 5)m(p + lO) + 220l (7.4) 

then both r(x, p , kx) and r(x, p , k2) factor as (1.2). 

Remark 4: For p = 11, see (5.4) and (5.5). 

Proof (for k = k2): A solution to the Pell equation at point (ii) of Section 2 is clearly 
(u, v) = (z2, i ) . Hence, from the first system of (2.7), we have 

f41) = 4 J = 4z2 (a perfect square), 
U^A^z4^^ 

and, from (5.2), 
k = A2n A2n_iA2n+2. (7.6) 

Letting n = - 1 in (7.6) yields 
k2 = A*2A*3A0 = A*2A%4z2 [from (7.5)]. (7.7) 

On calculation, we get 
U 2 = -z4 + 6z2-5, 
\^_3 = 2z4-8z2 + 10. V ' ' 

From (7.7) and (7.8) above, on choosing the signs properly to ensure the positiveness of k, 
one gets 

| 2 z ( z 4 - 6 z 2 + 5 ) ( 2 z 4 - 8 z 2 + 10) fo rz>4 , 
[2z(-z4 + 6z 2 -5 ) (2z 4 -8z 2 + 10) = 120 forz = 2 (i.e., p = 11). ' 
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For z > 4 (i.e., p > 251), from (7.9) and (7.3), we obtain 

k = k2 = 4(p + 5)l/4[p2 + 44p -\0(p + S)ll2{p +10) + 220] 

as desired. By using the second system of (2.7), the proof for k-kx can be obtained in a similar 
way. Q.E.D. 

The factorizations (1.2) of r(x, p, k) have the sets of coefficients 

[a = -2(p + 5)l,\ [a = -2(p + 5f\ 
k^+etp+sr+ia and h^-p+eip+sfi-io, 
\c = -p-2(p + 5)l/2-l0, \c = p-2(p + 5)V2 + lO, 
[d = -k/b, [d = -k/b, 

for k-kx and k2, respectively. As a numerical example, the factorizations of r(x, 1291, kl2) are 
shown below. Namely, we have [cf. (7.10)] 

x5 -129 l2x - 52609560 = (x2 -12* +1517)(x3 + 12x2 -1373* - 34680), (7.11) 

x5 -129 l2x - 30128280 = (x2-\2x- 1085)(x3 + 12x2 -1229* + 27768). (7.12) 
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