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1. INTRODUCTION 

Ladder networks have been studied extensively using Fibonacci numbers, Chebyshev poly-
nomials, Morgan-Voyce polynomials, Jacobsthal polynomials, etc. ([10], [11], [2], [14], [9]. [5], 
[3], and [4]). All these polynomials are, in fact, particular cases of the generalized polynomials 
defined by 

U„(x,y) = xU„_l(x,y)+yU„_2(x,y), (»>2) (la) 
with 

U0(x,y) = 0, Ul(x,y) = l, (lb) 
and 

V„(x, y) = xV^ix, y)+yV„_2(x, y), (» > 2) (2a) 
with 

V0(x,y) = 2, Vl(x,y) = x. (2b) 

We first show that rational functions derived from the ratios of these polynomials may in fact 
be synthesized using two-element-kind electrical networks. As particular cases, we will show that 
the networks realized using Fibonacci and Lucas polynomials, or Pell and Pell-Lucas polynomials 
are reactance of LC-networks, while those using Jacobsthal polynomials are RC or RL networks. 
Based on these results, we will establish some elegant relations among the various polynomials, as 
well as some results regarding the location of the zeros of these polynomials, and also their 
derivative polynomials. One of the results we need for our development is the following: 

V„(x, y) = Un+l(x, y)+yU^x, y) = xU„(x, y) + 2yU^(x, y\ (n>\), (3) 

which can be established easily by induction. We may also show that U2n(x, y) is an odd poly-
nomial in x of degree (2n-l) and a polynomial iny of degree (n-1), while U2n+l(x, y) is an even 
polynomial in x of degree 2n and a polynomial in y of degree n. Further, V2n(x, y) is an even 
polynomial in x of degree In and a polynomial in y of degree n, while V2n+l(x, y) is an odd 
polynomial in x of degree (2w +1) and a polynomial in y of degree n. 

2. SYNTHESIS WITH Un(x, y) AND VH(x, y) 

Consider the function U^+i}*'y?; we will express this as a continued fraction. 

U7n+\(x>y) =xU2n(x>y)+yUm-\(x>y) 
U2n(x,y) U2n(x,y) 

= X-\ TT—7 ^— = X + Um&y) xU2n_l(x,y)+yU2n_2(x,y) 
yu^ifay) yu2n^\(x9y) 
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= X + * , 1 = — X+x 1 (4) 

U2„-2(x,y) x + 
y 

+ 
l 

X 

If we now consider i"+f^^ as the driving point impedance (DPI) of a one-port network con-
sisting of two kinds of elements, whose impedances are proportional to x and (ylx\ then the 
function - u{x^y) giy e n by (4) may be realized by the network of Fig. 1(a), where there are n 
elements whose impedances are proportional to x, and n other elements whose impedances are 
proportional to (y/x). It is observed that, ify equals a positive constant, say a , and x = s (the 
complex frequency variable), then the element x corresponds to an inductor of value 1H, while the 
element (y/x) corresponds to a capacitor of value (1 / a)F. On the other hand, if y - s and x is a 
positive constant, say /?, then they correspond, respectively, to a resistor of f$ Ohms and an 
inductor of value(l / fi)H. 

We may similarly express 

u2U^yy v2n(x,y) 3 vln_x(^y) 
by continued fractions, and realize them as the DPIs of the one-ports shown in Figs. 1(b), 1(c), 
and 1(d), respectively. Now let us synthesize J ^yi as the DPI of a ladder network. We have, 
from (3), 

7 _ v%n(x,y) _xUin(x,y)+2yU2n-i(^y) 
U2„(x,y) U2„(x,y) 

1 =x+ 
Uin{x,y) xU2„_l(x,y)+yU2n_2(x,y) _£_ = x+ rr } ,A =x+ __TT ,,. , . , ? , . „ — - = x + - ^ . (5) 

+ -
2yU2„-i(x,y) 2^C/2lf_,(x,.y) 2y 2 ^ ( s , j) 

U2H-2(x,y) 

It is observed that 2t/
2"~ £yl is an impedance and may be realized by the network of Fig. 1(a), 

where all the impedances are now scaled by a factor of 2. Thus, J ^yi may be realized as the 
DPI of the ladder network shown in Fig. 1(e). Similarly, ,}"* ,'yl may be realized as the DPI of 
the two-element-kind network of Fig. 1(f). 

3. FIBONACCI, LUCAS, PELL? AND PELL-LUCAS POLYNOMIALS 
AND LADDER NETWORKS 

Let us first consider the case when x = s and y - a, a positive constant; that is, we are deal-
ing with Un(s, a) and Vn(s, a). When a = 1, they reduce to the Fibonacci and Lucas polynomials 
F„(s) and Ln($), respectively. Hence, we shall call Un(s, a) and Vn(s, a) modified Fibonacci and 
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Lucas polynomials, and denote them by Fn(s) and Ln(s), respectively. It is then evident from the 
results of the previous section that F2n+l(s) / F2n(s) may be realized as the DPI of the reactance 
network given by Fig. 1(a), where each of the series elements corresponds to an inductor of 
value 1H and each of the shunt elements corresponds to a capacitor of value ( l / a )F . Similarly, 
^2>)/^2„-i<>)> ^i(s)/T^(s)9 I ^ ( S ) / 4 M ( J ) , L2n(s)/F2n(s), and ^(s) / F2n+l(s) may all 
be realized by low-pass LC-ladder networks corresponding to Figs. 1(b), 1(c), 1(d), 1(e), and 
1(f), respectively. Thus, we have the interesting result that Fn+l($)/Fn(s), Ln+l(s)/ Ln(s), and 
Ln(s) I Fn{s) are all reactance functions. It is well known that the zeros and poles of a reactance 
function are simple, purely imaginary, and interlace [1]. Hence, the zeros of the polynomials 
Fn(s) and Ln(s) lie on the imaginary axis and are simple; further, the zeros of Fn(s) and Ln(s) 
interlace. Similar statements hold true for the zeros of Fn+l(s) and Fn(s), as well as those of 

Since, for the Pell and Pell-Lucas polynomials, we have 
P„(s) = Fn(2s) (6a) 

and 
Qn(s) = Ln(2s), (6b) 

it is obvious that P„+i(s) I Pn(s), Q„+i(s) / Qn(s), and Qn(s)l Pn(s) are all reactance functions. In 
fact, using the frequency scaling theorem [1], it is seen that their realizations are the same as those 
of Fn+l(s)/ Fn(s), Ln+l($)/ Ln($), and Ln{s)l Fn(s), respectively, except for a scaling of the values 
of the elements. 

We now consider the case when x = J3, a positive constant, and y - s\ that is, we are dealing 
with Un(j3, s) and Vn(ft, s). It is observed that when J3 = 1 they reduce to the Jacobsthal polyno-
mials [7]. Hence, we shall call Un(fi, s) and Vn(J3, s) modified Jacobsthal polynomials and denote 
them by Jn(s) and Jn($), respectively. It is then evident from the results of the previous section 
that J2n+i(s) I ̂ 2n(s) maY be realized as the DPI of the RL-network given by Fig. 1(a), where each 
of the series elements is a resistor of value J3 Ohms and each of the shunt elements is an induc-
tor of value (1//T)H. Similarly, we can realize the functions J2n(s) IJ2n-\{$), J2n+i(s)/J2n(s)> 
72*0) ^ H - I O ) , Jini^/Jinis), a n d 72n+i(s) ' J2n+i(s) a s D P I s o f t h e RL-networks corresponding 
to Figs. 1(b), 1(c), 1(d), 1(e), and 1(f), respectively, where all the series elements are resistors and 
all the shunt elements are inductors. Thus, we have the result that Jn+i(s)/Jn(s), Jn+i(s)/ Jn($), 
and Jn(s)l Jn{s) are all RL-impedance or RC-admittance functions. It is well known that the 
zeros and poles of an RL-impedance (or an RC-admittance) function lie on the negative real axis, 
are simple, and interlace; further, the one closest to the origin is a zero of the function [1]. Thus, 
the zeros of the polynomials Jn(s) and Jn{s) are real and negative; further, the zeros of Jn($) and 
Jn(s) interlace, with the zero closest to the origin being that of Jn(s). Similar statements hold 
true for the zeros of Jn+i($) and Jn(s), as well as those of Jn+l(s) and Jn(s). It is also interesting 
to observe that Jn+l(s) / Jn(s) is a ratio of two RC-admittance functions and hence, in general, is 
not realizable by two-element-kind networks; however, it is a positive real function (PRF), and so 
is always realizable by an RLC network. In fact, the zeros of Jn+X(s) and Jn(s) have a very inter-
esting pairwise alternative relationship on the negative real axis [6]. 
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FIGURE 1. Various two-element-kind ladder networks. 
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4. LADDER TWO-PORTS 

We will now express the chain parameters (see [2] and [14] for a definition of the chain 
parameters) of the six ladder two-port networks shown in Figs. 1(a)-1(f) in terms of the polyno-
mials Un(x,y) and Vn(x,y). First, consider the network of Fig. 1(a). We will now prove by 
induction that the chain matrix of this n-section ladder two-port is given by 

1 
[«i]« 

y" 
u2n+i(x>y) yu2n(x,y) 
u2„(x,y) yu^fay) 

It is seen that, for n = 1, (7) holds since the chain matrix for one section [see Fig. 2(a)] is 

["ill = 
l + (x2/y) x 

(x/y) 
x] = l\U3(x,y) yU2(x,y) 
lj y[U2(x,y) yU^y) 

(V) 

(8) 

The (« +1)-section ladder corresponding to Fig. 1(a) is shown in Fig. 2(b). Its chain matrix is 

r T 1 
[ a l J n + l = -

x2+y xy 
y fair (9) 

Hence, 

[«i]»+i = ,n+l 

x(xU2n+l +yU2„)+yU2n+l xy(xU2„ +yU2n_l)+y2U: In 
xU2n+l +yU: In xUln+yUjn-l 

y n+l 
xU2n+2 +yU2n+1 y(xU2n+1 +yU2„j 

a 2n+2 yu: 2«+l 

1 
y ,n+l 

2/H-3 
2«+2 

yu2n+2 

where, for brevity, we have used Un and Vn for Un(x,y) and V„(x,y). Hence, the result is true 
for (n +1) -sections; thus, the result given by (7) is established. 

(a) 

/I - section 
Ladder of 
Fig. 1 (a) 

(b) 

FIGURE 2* (a) One section of the ladder network of Fig. 1(a). 
(b) An (n + Insertion of the ladder of Fig. 1(a) considered 

as a cascade of the Insertion of Fig. 2(a) and the it-
section Sadder of Fig. 1(a). 

We will now obtain the chain matrix for the two-port of Fig. 1(b). This may be considered as 
a cascade of an (w-1)-section ladder of Fig. 1(a) and a single series element shown in Fig. 3. 
Hence, its chain matrix is given by 

K L = [ « i L - i 
1 x 
0 1 / 

'u2n-i(x,y) yu2n-2(x,y) 
u2n-2(x,y) yu2n_3(x,y)^ 

Thus, the chain matrix of the two-port of Fig. 1(b) is given by 
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[Oil 
y 

, 7 7 - 1 Pzn-ii^y) U2n_l(x,y)_ (10) 

Similarly, we can show that the chain matrix of the two-ports shown in Figs. 1(c) and 1(d) 
are, respectively, given by 

and 

fal = y 

y 

U2n+i(x,y) \V2n+l(x,y)\ 
U2„(x,y) ^V2n{x,y)\ 

W2n{x,y) yu2„(x,y)' 
\V2n_y{x,y) yU^ipcy) 

(11) 

(12) 

where relation (3) has been used. 
The network of Fig. 1(e) can be considered as a cascade of an L-section and an ( « - l ) -

section ladder of the type shown in Fig. 1(a), except that all the impedances are scaled by a factor 
of 2, as shown in Fig. 4. Hence, its chain matrix is given by 

las\ = 
(x2/2)+y xy 1 

, , n - l 
u2n-i(x,y) 2yu2„-2(x,y) 

^U2n_2{x,y) yU2„_3(x,y) ( x / 2 ) • yjy 

Thus, the chain matrix of the two-port of Fig. 1(e) may be expressed as 

1 
[«5L = 

\v2n(x,y) yv^-^y) 
iU2n(x,y) yu2n-i(*,y) 

Similarly, we can show that the chain matrix corresponding to the two-port of Fig. 1(f) is 

[<*el=-
y" 

jV2„(x,y) V2n+1(x,y) 
\U2n(x,y) U2n+l(x,y) 

(13) 

(14) 

(n-1) -section 
Ladder of 
Fig. 1 (a) 

FIGURE 3. The ladder of Fig. 1(b) considered as a cascade of the it-section 
ladder of Fig. 1(a) and a series element 

(n-1) -section 
Ladder of Fig. 1 (a) 
with all impedance 

scaled by a factor of 2 

FIGURE 4. The ladder of Fig, 1(e) considered as a cascade of an JL-section 
ladder of'Fig. 1(a), which is suitably impedance-scaled. 
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As a consequence of the reciprocity property of these ladders, the determinants of the chain 
matrices given by (7), (10), (11), (12), (13), and (14) are all unity. Hence, we get the following 
interesting results: 

U^(x, y)Un_x(*, y) - U2
n(x, y) = ( - i y y - \ (15a) 

U^(x, y)V„(x, y) - Vn+l(x, y)Un(x, y) = (-l)"2y". (15b) 

As special cases, we also have 

K+i(s)K-i(s) - Fn\s) = i-lfa"-1, (16a) 

Fn+1(s)Ln(s) - Ln+l(s)Fn(s) = (-X)"2a", (16b) 
and 

^ i ( ^ - i ( * ) - ^ ( * ) = ( - l ) "^ 1 , (17a) 
Jn+1(s)j„(^-7„+i(s)J„(s) = (-lT2^. (17b) 

5. RELATIONS AMONG THE VARIOUS POLYNOMIALS 

We first relate the two-variable polynomials U„(x, y) and V„(x, y) to the Morgan-Voyce 
polynomials B„(x), bn(x), c„(x), and C„(x) (see [10], [14], [9], [8], [13]). It is known from [14] 
that the chain matrix of the network of Fig. 1(a) in terms of the Morgan-Voyce polynomials is 
given by 

b„(w) xB^wj 
B^iw) b„_x(w) 

where 

(18a) 

w = x2/y. (18b) „• - v-2 

Now, comparing (18a) and (5), we get 

U2n+X{x,y) = ynbn(x2ly) (19a) 
and 

U2n(x,y) = xy"-1B„_l(x2/y). (19b) 

Also, from (3), (19b), and (19a), we get 

V2„+l(x,y) = xy"{B„(x2/y) + B„_l(x2/y)} 

and 
v2n{x, y)=y"{b„(x2 ly)+b„_l(x2 ly)}. 

Hence, 
Vln+l(xyy) = xyncn(x2ly) (19c) 

and 
V2n(x,y) = y»C„{x2ly). (19d) 

Using the above relations, (19a)-(19d), many interesting results for the two-variable polyno-
mials U„(x,y) and Vn(x,y)—including the summation, product, and other formulas—may be 
derived from the properties of the Morgan-Voyce polynomials. However, we will not pursue it 
here. Instead, we establish the following relations among the various polynomials. 
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Case 1: Modified Fibonacci and Lucas Polynomials 
Let y = a > 0. Then, Un(x, a) = Fn{x) and Vn(x, a) = Ln(x). Hence, from (19a)-(19d), we 

have 
4H-I (* ) = a\(x2 / «), pm (*) = ocn-lxBn_x{x21 a), (20a) 
L2n+1(x) = a"xcn(x2/a\ Zjx) = anCn{x21 a). (20b) 

Of course, when a -1, the above reduce to the known relations between the Fibonacci, Lucas, 
and Morgan-Voyce polynomials. 
Case 2: Modified Jacobsthal Polynomials 

Let P > 0. Then Un(/3, x) = Jn(x) and Vn(fi, x) = Jn(x). Hence, from (19a)-(19d), we have 

J2n+l(x) = x%(p21 x\ J2n{x) = (kn-xBn_x{fi21 x), (21a) 

J2n+i(x) = Px\(/32/xl J2n = xnC„(/J2/x). (21b) 
It is clear from (20) and (21) that the modified Fibonacci and Lucas polynomials and, hence, the 
Fibonacci and Lucas polynomials are directly related to the Jacobsthal polynomials by the simple 
relations 

F„(x) = x"-lJ„(a/x2), Ln(x) = x"j„(a/x2), (22a) 
and 

F„(x) = x"-'jn{\ I x \ L„(x) = x"j„(l I x2). (22b) 

The above result could have been obtained from the networks of Figs. 1(e) and 1(f) which, 
respectively, realize j2n(s)^2n(s) anc^ J2n+i(s) ^2n+\(s) when x = l andj = s, by first transform-
ing the complex frequency from s to a / s2, and then multiplying all the resulting impedances by s. 

Case 3: Modified Chebyshev Polynomials 
We define Gn(x) and H„(x), the modified Chebyshev polynomials of the first and second 

kind, respectively, by 
Gn(x) = Un(x,-a), Bn(x) = Vn(x,-a), (23a) 

where 
a > 0 . (23b) 

Then, from (19a)-( 19d), we have 
G2n+1(x) = (-iya"b„(-x2/a), Gn(x) = {-\y-'a"-ixB„_l{x21 a) (24a) 

and 
H2n+l{x) = {-\)nanxcn{-x21 a\ H2n(x) = (-\fa

nCn(-x21 a). (24b) 

Now, using (21a) and (21b), we may relate the modified Chebyshev polynomials directly to the 
Jacobsthal polynomials by 

Gn(x) = x"-lJn(-a I x \ Hn(x) = x»jn(-a I x2). (25) 

Now Off(jc) and ©„(x), the Fermat polynomials of the first and second kinds, respectively, 
are obtained by letting a = 2 in (23). Hence, 
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<D„(x) = x"-1J„(-2/x2), ®„(x) = x"U-2/x2). (26) 

Also, the Chebyshev polynomials Sn(x) and Tn(x) are given by 

Sn(x) = Un(2x, -1) = (2*)"-1 J„(-l / Ax2) (27a) 

and 
T„(x) = \Vn{2x, -1) = r-^U-l/Ax2). 27b) 

Case 4: Brahmagupta's Polynomials 
Brahmagupta's polynomials xn(x9 y) and yn(x, y) are defined as follows (see [12]): 

xn+i(x> y) = 2x^(x, j/) - Xxn_x{x, y), x0 = l9xi = x, (28a) 
and 

>Wi(*> JO = 2%(*> y) - tyn-i(x> y), yQ = \yi=y- (28b) 
It is known that if (x1? y{) is a positive integer set satisfying the relation 

x\-ty\ = X (29a) 

where Ms a square-free integer, then the positive integer set (xn,yn) is a solution of Brahma-
gupta-Bhaskara's equation given by [15]: 

x2-ty2 = A". (29b) 
The Brahmagupta polynomials are related to Un(x, y) and Vn(x, y) by 

*n(x, y) = i^ (2x , - X), ^ (x , J) = yUn(2x, - X), (30a) 

and to the Jacobsthal polynomials by 

xn(x,y) = 2n-lx"j„(-A/4x2), yn(x,y) = y(2xy-lJn(-A/4x2). (30b) 

If X > 0, and say = a, then 

*„(*,>;) = l#„(2x), ^(x>>) = >GL(2x). (31) 

However, if X < 0, say = - a , a > 0, then 

xn(x,y) = ±Ln(2x), y„(x,y) = yFn(2x). (32) 

Of course, the polynomials G„(x), Hn(x), Fn(x), and Ln(x) are related to the Jacobsthal and 
Morgan-Voyce polynomials, and hence we may relate the Brahmagupta polynomials also to these 
polynomials. Finally, it is seen that, when X = 1, 

x„(x,y)=T„(x), y„(x,y) = yS„(x), (33) 
while, when X = - 1 , 

xn(x,y) = iQ,(x), yn(x,y)=yP„(x). (34) 
As a consequence of (33) and (34), we can show that 

Q2n(x) = 2Tn(2x2 + l\ P2n(x) = 2xS„(2x2 + l). (35) 
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6. DERIVATIVE POLYNOMIALS AND THEIR ZEROS 

In this section we will show that we can get information about the location of the zeros of the 
derivative polynomials using the following known results about the nature of the impedance func-
tions of two-element-kind networks. 

Property 1: If the driving point impedance Z(s) = N(s)/D(s) is a reactance function, then 
so is Zx(s) = N'($)/ D'(s), where the prime indicates the derivative with respect to s. 

Property 2: If Z(s) = N(s)/D(s) is an RL-impedance (or an RC-admittance) function, then 
so is Zl(s) = N'(s)/Df(s). 

Let us first consider the function, Z(s) - Ln{s)l Fn{s), a ratio of the modified Fibonacci and 
Lucas polynomials. We have shown in Section 3 that Z(s) is a reactance function. Hence, from 
Property 1, the function Zx(s) = L^(s)/ F^s) is also a reactance function. By successively apply-
ing Property 1 k times, we see that the function Zk{s) = L^\s) I F^h\s), where (k) represents the 
k^ derivative with respect to s, is also a reactance function. Using the property of reactance 
functions, we see that the zeros of L^\s) and F^k\s) are simple and lie on the imaginary axis, 
with the two sets of zeros interlacing with each other. Similar statements hold for the zeros of 
L^s) and L{k\s), as well as for those of Fn

(k}(s) and F%k\s). 
We also proved in Section 3 that the ratios Jn(s)l'J„(s)9 Jn+\(s)/ Jn(s), and Jn+i(s) / Jn(s) are 

all RL-impedance functions. Thus, from Property 2, we see thatJ^Cs) / Jj;k)(s), 7i+i}<>) /7„k)(s), 
and JJiii(s) / Jj;k\s) are also RL-impedance functions. Using the property of RL-impedance func-
tions, we see that the zeros of J^k\$) and J£k\s) are real and negative. Further, the zeros of 
Jj;k\s) interlace with those of J„k\$)> with the zeros closest to the origin being that of J£k\s). 
Similar statements hold true for the zeros of J£\(s) and Jf;k\s), as well as those of 7i+i(5) a n^ 
7„(i)(s). 

Similar results may be established regarding the zeros of the derivatives of the Morgan-Voyce 
polynomials. 

7, CONCLUDING REMARKS 

It is shown that there exists a close relationship between the network functions of LC, RL, 
and RC ladder networks and certain generalized polynomials. In view of this, many interesting 
properties of these polynomials may be derived using the well-known properties of two-element-
kind ladder networks, and vice-versa. A few elegant results regarding the location of the zeros of 
the polynomials such as the Fibonacci, Lucas, Jacobsthal, as well as their derivative polynomials 
have been derived. Also, the interrelations among these various polynomials and the Morgan-
Voyce polynomials have been derived. 
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