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1. INTRODUCTION 

There is a long, rich history in the search for primes of the form Mp = 2P - 1 , named 
Mersenne primes. In the early years the study of Mersenne primes led to several important 
advances in number theory. In recent decades the computer has become instrumental in the 
search for large primes leading to several algorithmic advances. This paper provides an overview 
of the history (see [6]) and techniques used in finding the currently largest known explicit 
Mersenne prime. 

It is helpful to tour briefly some known properties of Mersenne primes. The possible 
exponents/? are restricted by an elementary theorem that says: if Mp is prime, thenp is prime. 
Furthermore, known factors of Mp must of necessity be of the form q = 2kp + \\ also, when 
p > 2 we must have q = 1 or 7 (mod 8). These properties can be used effectively to quickly sieve 
out many composite Mp, thus eliminating the need for the comparatively expensive Lucas-
Lehmer test, a definitive and rigorous primality test described below. There is also the ancient 
connection with perfect numbers. A perfect number equals the sum of its positive divisors 
excluding itself. The first two examples are 6 = 1 + 2 + 3 and 28 = 1 + 2 + 4 + 7 + 14. The Euclid-
Euler theorem states that an even number n is perfect if and only if it is of the form n - 2p~lMp, 
where Mp is prime. Therefore, one can say that every new Mersenne prime discovery immedi-
ately begets a new perfect number. 

Beyond these proven facts there has been a great deal of conjecture and mystery pertaining to 
the Mersenne primes. Two widely-believed heuristic arguments (see [3] and [8]) say that the 
probability that Mp be prime is 

(er logap)lp log2), where a = 2 if p = 3 (mod 4) and a - 6 if p = 1 (mod 4) 

and the number of Mersenne primes less than or equal to x is about 

(er/log2) * log log x, 

where y « 0.577 is the Euler constant. It is interesting to compare this heuristic with the occur-
rence of the currently known Mersenne primes. Chris Caldwell has done just that, providing 
several graphs examining these conjectures at 

http ://www. utm.edu/research/primes/notes/faq/NextMersenne. html. 

Since 1952, Robinson, Riesel, Hurwitz, Gillies, Tuckerman, and Noll & Nickel all used the 
most powerful computers of their day to find new Mersenne primes. In 1979, Slowinski, some-
times partnering with Nelson or Gage, began a 17-year reign finding seven ever larger Mersenne 
primes with Cray supercomputers. Colquitt and Welsh found an overlooked Mersenne prime in 
1988. In 1996, Woltman and Kurowski developed a kind of "Internet supercomputer" that has 
found the last 4 Mersenne primes. Once again, Caldwell's 
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http://www.utm.edu/research/primes/mersenne.shtml 

web page provides a superb and more complete history. 

2. RESULTS 

On June 1, 1999, the Mersenne prime 26972593 - 1 was discovered by Nayan Hajratwala on his 
personal computer using software developed by the author and Scott Kurowski. Hajratwala is 
one of over 12,000 participants in the Great Internet Mersenne Prime Search (GIMPS). As of 
this writing, the prime is the largest known explicit prime of any type. 

The new prime number is 2098960 decimal digits long. It took 111 days running part-time 
on a 350 MHz Pentium II computer to prove this number prime. Running non-stop the test 
would have taken just over three weeks. 

The number was subsequently verified as prime by three independent parties, each party 
employing different hardware and software. Gerardo Cisneros used David Slowinski and Paul 
Gage's program on the 4-CPU CRAY Y-MP at the National Autonomous University of Mexico's 
General Directorate of Academic Computing Services (DGSCA/UNAM). David Willimore used 
a program by Ernst Mayer on an Aerial Communications 500 MHz Alpha workstation. Cornelius 
Caesar used a program by John Sweeney on an IBM RS/6000. 

There are now 38 known Mersenne primes. Mp is prime for /?=2, 3, 5, 7, 13, 17, 19, 31, 
61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 
21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 
2976221, 3021377, 6972593. As we will see later, the new prime number may not be the 38th 

Mersenne prime by size. In fact, there could be exponents below 2976221 that yield a new Mer-
senne prime. The current status of the search is frequently updated at 

http://www.mersenne.org/status.htm. 

3. IMPLEMENTATION OF THE LUCAS-LEHMER TEST 

One requirement for finding such gargantuan Mersenne primes is a fast and efficient imple-
mentation. The search program uses the celebrated Lucas-Lehmer primality test (see [4] and [5]), 
a convenient variant of which is to define the sequence starting with xx := 4, and iterate 

xn+l:=x2
n-2(modMp) 

through the index n - p -1. Mp is prime if and only if x x = 0 (mod Mp). It is clear that the 
main operation in this rigorous test is that of squaring of numbers of size/? bits. Schonhage and 
Strassen [7] showed that a Fast Fourier Transform (FFT) can be used to square a p-h\t number in 
0(p logp log log/?) bit operations. A very rough description of the procedure is as follows. 
Because multiplication is essentially what is called "acyclic" convolution, and since acyclic convo-
lution is a cyclic convolution of zero-padded sequences, and since the cyclic case can be handled 
by Fourier transforms, one may zero-pad a p-hit number x to be squared, resulting in a number 
with about 2p bits, followed by FFT-based convolution to get the desired integer product. In the 
early 1990s, Richard Crandall [2] observed that, since squaring modulo Mp is a length-/? cyclic 
convolution of the bits of x, it is possible to expand x into approximate digits in an irrational base 
2r, where r = q/2k, and thereby, via cyclic convolution, accomplish two things: eliminate the 
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zero-padding entirely, and allow power-of-two run lengths in the Fourier transforms. In this 
fashion, the search time for large Mersenne primes was effectively halved. The present author 
implemented this "irrational base discrete weighted transform" (IBDWT) algorithm in assembly 
language to take advantage of the pipelining capabilities of the Intel architecture. One extension 
of the algorithm was to allow convenient, but non-power-of-two run lengths, which further 
increased search efficiency. The author also used an in-place variant of a David Bailey [1] idea on 
avoiding power-of-two memory strides that have a devastating impact on memory caches. 

The second ingredient for a successful search is a great deal of computing power. Tradi-
tionally this involved the use of supercomputers. Today, there is a better alternative—distributed 
computing. Distributed computing uses the idle cycles on thousands of ordinary computers con-
nected to the Internet. Scott Kurowski, founder ofEntropia.com, developed software that makes 
this easy. An Internet user runs the prime search program which automatically contacts a central 
server to get a work assignment. The computer works on this assignment off-line at low priority. 
When the assignment completes the program contacts the server to report its results and get a 
new work assignment. 

The Great Internet Mersenne Prime Search (GIMPS), which was founded in 1996, has a goal 
of methodically testing all Mersenne numbers up to achievable limits. Slower machines look for 
small factors of Mersenne numbers, and so perform the kind of sieving mentioned in the Introduc-
tion. Faster machines run the Lucas-Lehmer primality tests. Medium speed machines rerun 
primality tests to make sure the first test ran properly (the last 64 bits of the last Lucas-Lehmer 
iteration are compared). The distributed nature of the search process means that there are always 
"gaps" in the testing and double-checking process. There are over 12000 exponents below 
6972593 that have not finished testing and over 60000 exponents that have not been double-
checked including some below 2976221. 

To run a successful distributed project, the central server must do more than hand out assign-
ments and track results. The Entropia.com server must reassign work that is not completed in a 
timely manner. To help users running on several computers, the server provides reports so the 
user can keep track of each computer's progress. Finally, many users enjoy seeing where they or 
their team stand in a "top producers" report. The server also sends out periodic newsletters to 
interested users. It is important to provide these "extras" to keep an all-volunteer work force 
enthused and up-to-date on current events. 

4. THE FUTURE 

The Electronic Frontier Foundation, www.eff.org, is offering awards of $100,000 and up for 
the discovery of primes with 10 million, 100 million, and 1 billion digits. While the 10 million 
digit award may be within GIMPS reach—it is "only" 125 times more difficult than finding a 2 
million digit prime—the larger primes will require significant breakthroughs in primality testing or 
multiplication algorithms. 

There are several factors that affect when the next Mersenne prime will be found. Obviously, 
the size of the exponent is one. Based on past percentage distances between Mersenne primes, 
the next exponent could be as high as 28.6 million! The number of computers participating in 
GIMPS is always growing and the speed of the average computer gets faster every year. While 
the next Mersenne prime could be found tomorrow, the chances are GIMPS will find the next one 
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sometime during the next 2 years. It will be hard to sustain GIMPS' track record of 4 Mersenne 
primes found in less than 4 years. 

5. CONCLUSIONS 

It would appear that many supercomputing chores of the future will no doubt be performed 
by vast networks of computers. Many other fields of computation—ranging from medical data 
processing to searches for extraterrestrial intelligence—may well benefit from such massive 
parallelism. It is hoped that this Mersenne discovery serves as a kind of example of what is 
possible using these techniques. 

In many fields, new research will be needed to develop algorithms that can be run on such a 
massively parallel network using a minimum of bandwidth. Many businesses and universities will 
eventually harness power of the many small computers they own to do computationally intensive 
research more economically. 
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