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PROBLEMS PROPOSES IN THIS ISSUE 

H-559 Proposed by N. Gauthier, Royal Military College of Canada 
Let n and q be nonnegative integers and show that: 

n | 

a. S„(gr):=g 2cos(2^/») + (-l)«+%g 

= (-\y+1nLqn 

5F2qFqn 

" 1 

-rrf-r- "odd-
nLqn 

- n even. ^Iq^lq^qn 

Ln and F„ are Lucas and Fibonacci numbers. 

H-560 .Proposed by H.-J. Seiffert, Berlin, Germany 
Define the sequences of Fibonacci and Lucas polynomials by 

F0(x) = 0, Fl(x) = l, and Fn+l(x) = xFn(x) + F^x), n GN, 
and 

LQ(x) = 2, Lx(x) = xy and Ln+l(x) = xLn(x) + Ln_x{x\ neN, 

respectively. Show that, for all complex numbers x and all positive integers «, 

Z ^ r r r I VF*W = F2n(x)H-x)"Fn(x) 
k=Qn K\ j 

and 
[nil] I^Zl(" i t f 1 ^ = L2n(x) + (-xTL„(x)-
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SOLUTIONS 
Continuing... 

H-543 Proposed by David M Bloom, Brooklyn College of CUNY, Brooklyn, NY 
(Vol 36, no. 4, August 1998) 

Find all positive nonsquare integers d such that, in the continued fraction expansion 

^d = [n;ah...,ar_h2n], 

we have ax = • • • = ar_x = 1. (This includes the case r = 1 in which there are no a's.) 

Solution by Charles K Cook, University of South Carolina Sumter, Sumter, SC 
For the case [n; 2n ], it is known (see [1], p. 80) that x = [2n] satisfies x2 = 2nx +1. Thus, 

x - n + «Jn2 +1 and so 
4d = n + - 1 

which simplifies to d - n2 +1. 
Setting y equal to the periodic expansion and recovering a relationship for y using the usual 

formal manipulations on the continued fraction representation 
1 

y = l + -
1 + - 1 

1 + 

+ -
2n + -

y 
yields the following equations iory: 

y = 

y = 

y = 
y = 
y = 

0;V2S] 

0;Ul2^] 
0 ; U U > ] 
0;l,l,l,l,l,2w] (10w + 3).y2-16w>>-8 = 0 

2 / iy 2 -2 / iy - l = 0 

(2n + T)y2-4ny-2 = 0 
(4n + l)y2-6n-3 = 0 

(6n + 2)y2-\0ny-5 = 0 

and, in general, if Fm is the rrfi1 Fibonacci number, then y = [0; m-ones, 2n\ and y satisfies 
~ Fm¥\ - °> which can be shown by a routine inductive argument. 

Thus, 
n2l(2n-l)Fm+Fm+l 

m+l 
must be integral. So both 

„2 + 1 + (2„-l)Fm ^ (2»-l)Fm 

[ m+l m+l 

are integral. 
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However, gcd(Fm, Fm+l). = 1, so 2w = 1 (mod Fm+1). Hence, Fm+l must b,e odd. Therefore, 
gcd(2, Fm+l) = 1, and the linear congruence In = 1 (modFw+1) always has a solution. Thus, if m is 
the number of ones in the continued fraction expansion, it follows that 

, 2 , (2n-l)Fm 

provided Fm+l is odd. 
A few solutions are shown in the table below. 

m 
0 

| 1 
2 
3 
4 
5 
6 
7 
8 

Fm 

1 
1 
2 
3 
5 
8 
13 
21 
34 

n = n(k), k > 1 
k 
k 

None 
3 f c - l 
5k-2 
None 

13*-6 
21*-10 

None 

n values 
1,2,3,... 
1,2,3,... 

None 
2,5,8,... 
3,8,13,... 

None 
7,20,33,... 
H 32,53,... 

None 

d = d(k) 
* 2 + l 

k2+2k 
k2+k + y2 

9k2 -2k 
25k2-Uk+2 

£2+(10& + 3)/8 
169Jfc2-140& + 29 
441*2-394fc+88 
*2+(42& + 13)/34 

d values 
2,5,10,... 
3,8,15,... 

None 
7,32,75,... 

13,74,185,... 
None 

58,425,1130,... 
135,1064,2875,... 

None 

Reference 
1. C. D. Olds. Continued Fractions. Washington, D.C.: The Mathematical Association of 
America, 1963. 
Also solved by P. Bruckman, A. Tuyl, and the proposer. 

Primes and FPPfs 

B-544 Proposed by Paul S. Bruckman, Berkeley», CA 
(Vol 36, mo. 49 August 1998) 

Given a prime p > 5 such that Z(p) = p + l, suppose that q = \{p2 - 3) and r = p2 - p -1 are 
primes with Z(q) = q +1, Z(r) = -|(r -1). Prove that n = pgr is a FPP (see previous proposals 
for definitions of the Z-function and of FPP's). 
Solution by the proposer 

For all natural m such that gcd(w, 10) = 1, let sm denote the Jacobi symbol (5/m), and 
mf = m- sm. If s is any prime * 2,5, it is well known that Z{s) \ sf. We then see that sp-sq--\, 
sr = gn = spsq8r = +1. Thus, |? = ±3, q & ±3, r = ±1, n = ±1 (mod 10). 

Now, if J is any prime * 2,5 and a(s) = W Z(s), then a(s) and ^-(J -1) have the same parity 
(see this journal, Problem H-494, Vol. 33, no. 1, Feb. 1995; solution in Vol. 34, no. 2, Aug. 1996, 
pp. 190-91). Since a(p) = a{q) = 1, a(r) = 2, it follows that p = q = 3, r = n = l (mod 4). Also, 
32 _ 3 _ 1 = 5? which shows that r cannot be prime if p = 3 (mod 20). Therefore, p = 7 (mod 20); 
this in turn implies that # = 3, r = w s 1 (mod 20). 

Next, we see that Z(?) = ̂ 0 2 - 1 ) , Z(r) = £(p + l)(p-2). Then 

Z(n) = lcm{Z(/>), Z(q\ Z(r)} = \(p2 - \){p - 2). 

In order to show that n is a FPP, it suffices to show that n - 1 = nf = 0 (mod Z(w)). Now 
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pq-r = ±(p3-2p2-p + 2) = ±(p2-i)(j>-2) = Z(ny, 

hence, pq = r (mod Z(n)). Then/i = r2 (mod Z(n)). Next? r + l-p(p-t), r-l = (p + l)(p-2), 
whence r2 - 1 = p(p2 - l)(p - 2) = 2pZ(n) = 0 (mod Z(n)). Thus, n' = n-l = r2 - 1 = 0 (mod 
Z(w)), which shows that n is a FPP. Q.E.D. 

Note: The smallest FPP satisfying the above conditions is 7 • 23 • 41 (p = 7). 
y4&0 solved by If.-/. Seiffert 

An Interesting Equation 

H-553 Proposed by Paul & Bruckman, Berkeley, CA 
(Vol 37, no. 3, August 1999) 

The following Diophantine equation has the trivial solution (A, B, C, D) - (A, A, A, 0): 
A3 + B3 + C3 - 3 ABC = Dk, where k is a positive integer. (1) 

Find nontrivial solutions of (1), i.e., with all quantities positive integers. 
Solution (1) by the proposer 

Let 
0=exp(fwr), (2) 

K(a, b, c) = a3 +A3 + c3 -3a*c. (3) 

As we may easily verify: 
K(a, b, c) = $(a, b, c) • s(a, b09 c02) • s(a, £02, cff), (4) 

where 
s(a,Z>,c) = a + Z> + c. (5) 

Given U, V, W positive integers, where at least two of them are distinct, let 
x = (s(u, v, W))\Y=(s(u, ve9 we2))\ z = (s(u, vd2, we))k. (6) 

From (4), it follows that 
X¥Z = (K(U,V,W))k. (7) 

Now define the following quantities: 
A = ±s(X, Y, Z), B = ±s(X, Y02, Z0), C = }s(X, Yd, Z02). (8) 

Again using (4), we see that 
27ABC = K(X,Y,Z). (9) 

We now employ the following well-known expression: 

w+^+^lJ fell: o°) 
By trinomial expansion of the quantities defined in (8), implementing (6) and (10), we obtain the 
following expressions: 

A = F0(U,V,W), B = Fl(U,V,W), C = F2(U,V,W), (11) 

where 
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Fj(U,V,W)= X { k ^U'VW, j = 0,1,2, (12) 
f+g+h=k V > 5 > ' V 

g-h&j (mod 3) 

and I * ^ 1 is a trinomial coefficient = ' 

From (12), it is clear that A, B, and C are positive integers. We may also easily verify the follow-
ing inverse relations: 

X = s(A, B,Q,Y = s(A, B0, C02\ Z = s(A, B02, CO). (13) 
Again using (4), this implies 

XYZ = K(A,B,Q. (14) 

From (7) and (14), it follows that 

K{A,B9Q = (K(U,V,W))k. (15) 
Thus, by reference to (1), we see that we may set 

D = K(U,V,W). (16) 

Accordingly, solutions (A,B,C,D) of (1) are given by (11) and (16); alternatively, A, B, and C 
may be obtained indirectly from (8) and (6). 

Note that the restriction that U, V, and W be not all identical ensures that Y and Z are 
positive, as of course is X. Then, from (7) and (16), it follows that D> 0, which avoids trivial 
solutions. 
Solution (2) by John Jaroma andRajih Rahntan, Gettysburg College, Gettysburg, PA 

After a brief historical background, we will show that, in fact, there are an infinite number of 
solutions of (1), subject to (2): 

A3 + B3+C3-3ABC = Dk; (1) 
A$,C,De{l ,2 , . . .} and Jfce{2,3,...}. (2) 

First, in terms of a historical perspective, it appears that Diophantine equations involving 
cubic terms have generated considerable interest. For example, in 1847, J. J. Sylvester provided 
sufficient conditions for the insolubility in integers of the equation 

Ax3 + By3 + Cz3=:Dxyz. (3) 
Moreover, Sylvester was able to prove that whenever (3) is insoluble, there must exist an 

entire family of related equations equally insoluble. His motivation for studying such equations 
was to break ground in the area of third-degree equations. Ultimately, Sylvester had hoped to 
open a new field in connection with Fermat's Last Theorem. 

Today, cubic equations continue to command a great deal of attention. For instance, 
although we know that every number (with the possible exception of those in the form 9«±4) 
can be expressed as the sum of four cubes, it is still not known whether every number can be 
expressed as the sum of four cubes with two of the cubes equal. Stated algebraically, we would 
like to know, if given any k, do integral solutions exist for the Diophantine equation 

,43 + 53+2C3 = Jfc. (4) 
(k - 76 is the first of many values of* for which an integral solution is not known.) 
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Perhaps an even more difficult problem exists in the question whether numbers not of the 
form 9n±4 can be expressed as the sum of three cubes; that is, does the equation 

A3 + B3 + C3 = k (5) 
have a solution in integers \/k *9n±4f? The first known value of k for which the problem 
becomes open is k - 30. Furthermore, even if we restrict ourselves to the specific case k = 3, we 
do not know whether (151,1) and (4,4, - 5) are the only two solutions of (5). 

It is likely that Diophantine equations will continue to be an area of research for some time to 
come, for we know that, given an arbitrary Diophantine equation, there cannot exist an algorithm 
which in a finite number of steps will decide its solvability. Hilbert's Tenth Problem was demon-
strated to be unsolvable by Yuri Matiyasevich in 1970. 

Consider the following infinite sets: 
(I) pe{l ,2, . . .} , * = 3/> + l, % ^ G { 1 , 2 ? . . . } : ^ / ^ G { 2 , 3 , . . . } , 

D = 1 + n\ + (nl It^f -30?! In^n^ 
A = Dp, B = (nl/n2)A, C = nlA = (n2B). 

(II) * = 2, w e f t 2,...}, 
B = D = 9n2, A = D-n, C = D+n. 

Remark: We have ignored the case where p = 0, for this would imply that k = 1 and it would 
then be trivial to produce infinitely many solutions of (1). 

Proposition: Sets (I) and (II) represent disjoint families of solutions of (1) satisfying (2). 
Proof: We first prove that (I) and (II) are disjoint families of solutions of (1). Since 

elements of (I) and (II) are ordered 4-tuples of the form (A, B, C, D) and p e {1,2,...}, it follows 
immediately that (I) and (II) are disjoint as 3p +1 ^ 2. 

Now, to show that (I) represents an infinite set of solutions of (1), we let n-r^. Hence, 
nx = bn for some b e{2,3,...} and 

D = l + b3+h3n3-3b\ B = bA, C = nbA = nB. (6) 
Substituting (6) into (1), we get 

D3p + b3D3p+n3b3D3p-3nb2D3p = D3p+\ (7) 
Rewriting (7), we obtain 

D3p{\ + b3 +n3b3 - 3nb2) = D3p+l. (8) 

Thus, (8) is true if and only if 1+b3 +h3n3 - 3b2n = D. By (6), the result follows immediately. 
Finally to show that (II) is also an infinite family of solutions of (1), we infer from (II) that 

B = D = n + A and C = In + A. 
Substituting these quantities and the hypothesis that k - 2 into (1), we obtain 

A3 + (n + A)3 +(2n + A)3 -3A(n + A)(2n + A) = (n + A)2. (9) 

Simplifying (9), we obtain 9n2(n + A) = (n + A)2. It now follows that (II) is a set of solutions of 
(1) if and only if 9n2 - n - A = 0. But, by hypothesis, A-D-n- 9n2 -n, and this produces the 
desired result. 
Also solved by B. Beasley, C Cook, andH.-J. Seiffert 

96 


