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1. INTRODUCTION 

As is known, various methods have been proposed for finding summation formulas for the 
so-called arithmetic-geometric progression of the form 

S,»:=5>**', (1) 
k=Q 

where a is a real or complex number with a*0 and a* l9 and n and/? are nonnegative integers. 
For some recent papers, see, e.g., de Bruyn [1], Gauthier [4], and Hsu [5]. The object of this 
note is to show that de Bruyn's formulas expressed in terms of determinants could be given con-
cise explicit forms in terms of Eulerian polynomials. In fact, it is found that the recurrence rela-
tions (recursive equations) obtained by de Bruyn for those determinants used in his formulas can 
be solved by means of Eulerian polynomials. 

Let us recall de Bruynfs work briefly. De Bruyn made use of Cramer's rule to develop some 
explicit formulas for expressing Sa^p(n) as (/? +1) x (/? +1) determinants. He then gave two 
formulas for Sap(n), one in powers of (w + 1), the other in powers of n, in which all the coeffi-
cients are also expressed as determinants. More precisely, de Bruyn's first formula in powers of 
(n +1) takes the form 

^.P(»)=^s(fU(a)(»+irr+/^)i 
r=0 

,n+l 1 

where fJa) = 1, and fr(a) (r = 1,2,. • P-

f 

fr(a) = r\(j^J det 

1) are given by 
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and fo(a), fi(a), f2{a), ••• satisfy the recurrence relations 

Ua) = \, aS(yV/(«)-/r(«) = 0, (r = l,2,...). 
y=0 

(4) 

De Bruyn observed that if the fj's are denoted as the Bernoulli numbers Bj9 and we put a = 1, 
equation (4) just gives the well-known recurrence formula for the Bernoulli numbers. This led 
him to call the numbers fr(a) (r = 0,1,2,...) the a-Bernoulli numbers. In the next section, we 
shall show that fr(a) a r e closely related to Eulerian polynomials. 
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2. SOLUTION OF RECURSIVE EQUATIONS 

Evidently the system of equations given by (4) determines /r(a)fs uniquely with f0(a) = 1. 
Using (4) recursively one may write 

r r„\ _ 1 f / „ \ q_ , , . a + a2 -f . a + 4a2+a3 

/ o ( a ) - ( T ^ ' / l ( a ) = ( T ^ ' / 2 ( a ) ^ ( T ^ ' Ma)= (i-af ' etc-
Here it may be verified that the numerators of the / r ( a ) ' s (V = 0,1,2,...) are precisely the Eulerian 
polynomials, 4.(a) (r = 0,1,2,...). In fact, it is known that (cf. Comtet [3], § 6.5) 

4,(a) = l, 4(a) = cr, A2(a) = a + a2, A3(a) = a + 4a2 +a3, etc. 

Thus, one may reasonably conjecture that 

/ r(«) = ̂ ^ r ( r = 0,l,2,...) (5) 

are the solutions to the recursive equations given by (4). We will prove this below as a lemma. 
The historical origin of Eulerian polynomials A (a) is the following summation formula for 

the infinite arithmetic-geometric series 

Takkp = — ^ 4 r , | a |< l , a * 0 , (6) 

where A (a) is a polynomial of degree/? in a, p > 0, and 0° := 1 (see, e.g., Carlitz [2] and Comtet 
[3; p. 245]). We shall utilize (6) to prove our preceding conjecture given in the following lemma. 

Lemma: The functions fr(a) given by (5) satisfy the recursive equations displayed in (4) for all 
complex numbers a ̂  0,1. 

Proof: Since A^(a) - 1 = f0(a), it suffices to consider equation (4) for r > 1. Clearly these 
equations may be equivalently replaced by the following: 

-2(^-^-0 <. = !.«...). 

Substituting (5) into (7) and using the representation (6) for Aj(a)/(l-a)J+l with \a\ < 1, it is 
easily found that the left-hand side (LHS) of (7) becomes 

j=0\J/k=Q k=0 k=0 j=0^Js k=l 

=£^+ l(^+ i ) r-Za^r = o ; 
fc=Q k=l 

This shows that (7) holds for the /;(«)fs given by (5) with \a\ < 1, a * 0. Now the LHS of (7) 
[with fj(a) given by (5)] is a rational function of a that vanishes for infinitely many values of a; 
thus, it should vanish identically with the only restrictions a * 0, a * 1. This completes the proof 
of the Lemma. 
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3. REFINEMENT OF FORMULA (2) 

It is known that the Eulerian polynomial ^(a) (r > 1) may be written in the form (cf. 
Comtet [3; §6.5]) 

4 (a ) = £.4(r,£)afc, 
k=\ 

where A(r, k) are called Eulerian numbers given explicitly by 
k 

^*)=l(-iy(r)1)(*-./)r (!<*</•). 

(8) 

(9) 

Using the Lemma, one can express de Bruyn 's formula (2) in a refined form. This is given by the 
following theorem. 

Theorem: For any given integer p > 0, there holds the summation formula 

Sa.P(») = 
i 

a-\ f^V)(\-aJ (I-a) (10) 

where 4-(a) a r e given by (8) and (9), a ^ 0, a ^ 1. 

Remark: De Bruyn's second formula for Sa^p(n) in powers of n given by 
VH-I „n Pz}fm\ fan — \\ 

s°-»(n)=^inP+^^r(a)nP'r+fp{a^ , p>h 

can likewise be refined to the form 

a"+1 1 
a-\ a-\ « - z ; r=l 

p\JML 
(l-af' 

nP-r . AM 
(i-ay 

( i i ) 

This is obtained by means of the Lemma. Surely, both (10) and (11) are useful for practical com-
putations whenever n is much larger than/?, say n »p3. Moreover, it may be worth mentioning 
that the sum Sa^p{n) can also be expressed using Stirling numbers of the second kind, and the 
formula is also available for n »p3 (cf. [5]). 

4. A DIRECT PROOF OF THE THEOREM 

Here we shall give a direct computational proof of (10) with the aid of (6). Since (10) is 
obvious for p = 0, it suffices to consider the case p > 1. 

For a given real or complex number a with a * 1, a * 0, we shall make use of the simple 
exponential function ae0, 0 real or complex. Since ae° —»a;* 1 as 0—»0, we can find a suffi-
ciently small positive number 8 such that ae9 ^ 1 for \0\ < 8. 

Let us consider the sum 

S(n,0):=^(ae*)k = l a % , (\0\<S). 

For given p > 1, we have the /7th derivative with respect to 0: 
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dp 

d0p ${n,e) = Y^akkPeke. 
k=\ 

Thus, it follows that 

$,»=5>**' = 
k=i 

dp 

d0p S(n,0) 

dp 

d0p)o
l [{\-a"+W+W)(\-aee)-x], 

(12) 

where the derivatives are evaluated at 0 = 0. Using Leibniz's product formula for differentiation, 
we easily find that the RHS of (12) equals 

| ( f ) ( -^X-D-^) o ( i - ^r.+ ( 1_a«+i) | JL|( 1_a e*ri (13) 

It remains to compute 

dff {l-aeey\ (0<r<p). 
70 

This can be done easily by using (6) with \a\ < 1, a ^ 0, as follows: 

(14) 

Here it may be noted that the series T^=Qakeke in (14) can be term-wise differentiated any number 
of times in a neighborhood of 9 = 0, say \0\ < 5, provided that S is sufficiently small such that 
\aee\ < p=constant< 1 for \0\ < 8, which obviously implies the uniform convergence condition 
for the related series. 

Now, recalling (12) and substituting (14) into (13), we obtain 
.P=}/„\ Atn\ . Ap(a) 

if S„,M = l 
a-\ £i\.r)(l-ayK \\-a) (15) 

This is precisely equivalent to (10). 
Finally, note that (15) is an equality between rational functions of a, valid for infinitely many 

values of a (|a| < 1, a*0 ) so that it must be an identity valid for all values of a with the only 
restrictions a -*• 1, a * 0. This completes the proof of (10). 

5e AN EXAMPLE 

Consider a pair of trigonometric sums as follows: 

c(n) = J akkp cosk0, s(n) = £ akkp sin k0, 
k=Q k=0 

where a is a positive real number, a ^ l ^ a positive integer, and 0 a real number, 0 < 0 < In. 
These sums can be computed precisely using the explicit formulas (10) or (11). Indeed, taking 
a = aew (i2 = -1) in (1), we have 
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J^(akeike)kp = c(n)+is(n). 
k=0 

Denoting the RHS of (10) or of (11) by <D(a, p, ri), we get 

c{n) = Re ®(aew, p, n), s(n) = Im <&(aew, p, n), 

where R e O and Im® denote the real part and imaginary part of <D, respectively. Obviously, this 
follows from the fact that (aew)k = ak coskO+iak sin k9. 
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