EQUATIONS INVOLVING ARITHMETIC FUNCTIONS OF FIBONACCI AND LUCAS NUMBERS

Florian Luca

Mathematical Institute, Czech Academy of Sciences Žitná 25, 115 67 Praha 1, Czech Republic (Submitted March 1998-Final Revision November 1998)

For any positive integer k, let $\phi(k)$ and $\sigma(k)$ be the number of positive integers less than or equal to k and relatively prime to k and the sum of divisors of k, respectively.

In [6] we have shown that $\phi(F_n) \ge F_{\phi(n)}$ and that $\sigma(F_n) \le F_{\sigma(n)}$ and we have also determined all the cases in which the above inequalities become equalities. A more general inequality of this type was proved in [7].

In [8] we have determined all the positive solutions of the equation $\phi(x^m - y^m) = x^n + y^n$ and in [9] we have determined all the integer solutions of the equation $\phi(|x^m + y^m|) = |x^n + y^n|$.

In this paper, we present the following theorem.

Theorem:

(1) The only solutions of the equation

$$\phi(|F_n|) = 2^m, \tag{1}$$

are obtained for $n = \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6, \pm 9$.

(2) The only solutions of the equation

$$\phi(|L_n|) = 2^m, \tag{2}$$

are obtained for $n = 0, \pm 1, \pm 2, \pm 3$.

(3) The only solutions of the equation

$$\sigma(|F_n|) = 2^m, \tag{3}$$

are obtained for $n = \pm 1, \pm 2, \pm 4, \pm 8$.

(4) The only solutions of the equation

$$\sigma(|L_n|) = 2^m,\tag{4}$$

are obtained for $n = \pm 1, \pm 2, \pm 4$.

Let $n \ge 3$ be a positive integer. It is well known that the regular polygon with n sides can be constructed with the ruler and the compass if and only if $\phi(n)$ is a power of 2. Hence, the above theorem has the following immediate corollary.

Corollary:

- (1) The only regular polygons that can be constructed with the ruler and the compass and whose number of sides is a Fibonacci number are the ones with 3, 5, 8, and 34 sides, respectively.
- (2) The only regular polygons that can be constructed with the ruler and the compass and whose number of sides is a Lucas number are the ones with 3 and 4 sides, respectively.

The question of finding all the regular polygons that can be constructed with the ruler and the compass and whose number of sides n has various special forms has been considered by us

2000]

previously. For example, in [10] we found all such regular polygons whose number of sides n belongs to the Pascal triangle and in [11] we found all such regular polygons whose number of sides n is a difference of two equal powers.

We begin with the following lemmas.

Lemma 1:

- (1) $F_{-n} = (-1)^{n+1} F_n$ and $L_{-n} = (-1)^n L_n$.
- (2) $2F_{m+n} = F_m L_n + L_n F_m$ and $2L_{m+n} = 5F_m F_n + L_m L_n$.
- (3) $F_{2n} = F_n L_n$ and $L_{2n} = L_n^2 + 2(-1)^{n+1}$.
- (4) $L_n^2 5F_n^2 = 4(-1)^n$.

Proof: See [2]. □

Lemma 2:

- (1) Let p > 5 be a prime number. If $\left(\frac{5}{p}\right) = 1$, then $p \mid F_{p-1}$. Otherwise, $p \mid F_{p+1}$.
- (2) $(F_m, F_n) = F_{(m,n)}$ for all positive integers m and n.
- (3) If $m \mid n$ and n/m is odd, then $L_m \mid L_n$.
- (4) Let p and n be positive integers such that p is an odd prime. Then $(L_p, F_n) > 2$ if and only if $p \mid n$ and $n \mid p$ is even.

Proof: (1) follows from Theorem XXII in [1].

- (2) follows either from Theorem VI in [1] or from Theorem 2.5 in [3] or from the Main Theorem in [12].
- (3) follows either from Theorem VII in [1] or from Theorem 2.7 in [3] or from the Main Theorem in [12].
 - (4) follows either from Theorem 2.9 in [3] or from the Main Theorem in [12]. \Box

Lemma 3: Let $k \ge 3$ be an integer.

- (1) The period of $(F_n)_{n\geq 0}$ modulo 2^k is $2^{k-1}\cdot 3$.
- (2) $F_{2^{k-2}\cdot 3} \equiv 2^k \pmod{2^{k+1}}$. Moreover, if $F_n \equiv 0 \pmod{2^k}$, then $n \equiv 0 \pmod{2^{k-2}\cdot 3}$
- (3) Assume that n is an odd integer such that $F_n \equiv \pm 1 \pmod{2^k}$. Then $F_n \equiv 1 \pmod{2^k}$ and $n \equiv \pm 1 \pmod{2^{k-1} \cdot 3}$.

Proof: (1) follows from Theorem 5 in [13].

- (2) The first congruence is Lemma 1 in [4]. The second assertion follows from Lemma 2 in [5].
- (3) We first show that $F_n \not\equiv -1 \pmod{2^k}$. Indeed, by (1) above and the Main Theorem in [4], it follows that the congruence $F_n \equiv -1 \pmod{2^k}$ has only one solution $n \pmod{2^{k-1} \cdot 3}$. Since $F_{-2} = -1$, it follows that $n \equiv -2 \pmod{2^{k-1} \cdot 3}$. This contradicts the fact that n is odd.

We now look at the congruence $F_n \equiv 1 \pmod{2^k}$. By (1) above and the Main Theorem in [4], it follows that this congruence has exactly three solutions $n \pmod{2^{k-1} \cdot 3}$. Since $F_{-1} = F_1 = F_2 = 1$, it follows that $n \equiv \pm 1$, $2 \pmod{2^{k-1} \cdot 3}$. Since $n = 1 \pmod{2^{k-1} \cdot 3}$.

Lemma 4: Let $k \ge 3$ be a positive integer. Then

$$L_{2^k} \equiv \begin{cases} 2^{k+1}3 - 1 \pmod{2^{k+4}} & \text{if } k \equiv 1 \pmod{2}, \\ 2^{k+1}5 - 1 \pmod{2^{k+4}} & \text{if } k \equiv 0 \pmod{2}. \end{cases}$$

Proof: One can check that the asserted congruences hold for k = 3 and 4. We proceed by induction on k. Assume that the asserted congruence holds for some $k \ge 3$.

Suppose that k is odd. Then $L_{2^k} = 2^{k+1}3 - 1 + 2^{k+4}l$ for some integer l. Using Lemma 1(3), it follows that

$$\begin{split} L_{2^{k+1}} &= L_{2^k}^2 - 2 = \left((2^{k+1}3 - 1)^2 + 2^{k+5}l(2^{k+1}3 - 1)^2 + 2^{2k+8}l^2 \right) - 2 \\ &= (2^{k+1}3 - 1)^2 - 2 \; (\text{mod } 2^{k+5}). \end{split}$$

Hence,

$$L_{2^{k+1}} \equiv 2^{2k+2}9 - 2^{k+2}3 + 1 - 2 \equiv 2^{2k+2}9 + 2^{k+2}(-3) - 1 \pmod{2^{k+5}}.$$

Since $k \ge 3$ it follows that $2k + 2 \ge k + 5$. Moreover, since $-3 \equiv 5 \pmod{2^3}$, the above congruence becomes

$$L_{2^{k+1}} \equiv 2^{k+2} 5 - 1 \pmod{2^{k+5}}.$$

The case k even can be dealt with similarly. \square

Proof of the Theorem: In what follows, we will always assume that $n \ge 0$.

(1) We first show that if $\phi(F_n) = 2^m$, then the only prime divisors of n are among the elements of the set $\{2, 3, 5\}$. Indeed, assume that this is not the case. Let p > 5 be a prime number dividing n. Since $F_p | F_n$, it follows that $\phi(F_p) | \phi(F_n) = 2^m$. Hence, $\phi(F_p) = 2^{m_1}$. It follows that

$$F_p = 2^l p_1 \cdot \dots \cdot p_k, \tag{5}$$

where l > 0, k > 0, and $p_1 < p_2 < \cdots < p_k$ are Fermat primes.

Notice that l = 0 and $p_1 > 5$. Indeed, since p > 5 is a prime, it follows, by Lemma 2(2), that F_p is coprime to F_m for $1 < m \le 5$. Since $F_3 = 2$, $F_4 = 3$, and $F_5 = 5$, it follows that l = 0 and $p_1 > 5$.

Hence, $p_1 > 5$ for all i = 1, ..., k. Write $p_i = 2^{2^{\alpha_i}} +$ for some $\alpha_i \ge 2$. It follows that

$$p_1 = 4^{2^{\alpha_1 - 1}} + 1 \equiv 2 \pmod{5}.$$

Since $\left(\frac{p_1}{5}\right) = \left(\frac{2}{5}\right) = -1$, it follows, by the quadratic reciprocity law, that $\left(\frac{5}{p_1}\right) = -1$. It follows, by Lemma 2(1), that $p_1 \mid F_{p_1+1}$. Hence,

$$p_1 | (F_p, F_{p_1+1}) = F_{(p, p_1+1)}.$$

The above divisibility relation and the fact that p is prime, forces $p \mid p_1 + 1 = 2(2^{2^{\alpha_1} - 1} + 1)$. Hence, $p \mid 2^{2^{\alpha_1} - 1} + 1$. Thus,

$$p \le 2^{2^{\alpha_1} - 1} + 1. \tag{6}$$

On the other hand, since

$$F_p = \prod_{i=1}^k (2^{2^{\alpha_i}} + 1) \equiv 1 \pmod{2^{2^{\alpha_i}}},$$

51

it follows, by Lemma 3(3), that $p \equiv \pm 1 \pmod{2^{2^{\alpha_1}-1}}$. In particular,

$$p \ge 2^{2^{\alpha_1} - 1} 3 - 1. \tag{7}$$

From inequalities (6) and (7), it follows that $2^{2^{\alpha_1}-1}3-1 \le 2^{2^{\alpha_1}-1}+1$ or $2^{2^{\alpha_1}} \le 2$. This implies that $\alpha_1 = 0$ which contradicts the fact that $\alpha_1 \ge 2$.

Now write $n = 2^a 3^b 5^c$. We show that $a \le 2$. Indeed, if $a \ge 3$, then $21 = F_8 \mid F_n$, therefore

$$3|12 = \phi(21)|\phi(F_n) = 2^m$$

which is a contradiction. We show that $b \le 2$. Indeed, if $b \ge 3$, then $53 \mid F_{27} \mid F_n$, therefore

13 | 52 =
$$\phi(53) | \phi(F_n) = 2^m$$
,

which is a contradiction. Finally, we show that $c \le 1$. Indeed, if $c \ge 2$, then $3001 | F_{25} | F_n$, therefore

$$3|3000 = \phi(3001)|\phi(F_n) = 2^m$$

which is again a contradiction. In conclusion, $n \mid 2^2 \cdot 3^2 \cdot 5 = 180$. One may easily check that the only divisors n of 180 for which $\phi(F_n)$ is a power of 2 are indeed the announced ones.

(2) Since $\phi(2) = \phi(1) = 1 = 2^0$ and $\phi(3) = \phi(4) = 2^1$, it follows that n = 0, 1, 2, 3 lead to solutions of equation (2). We now show that these are the only ones. One may easily check that $n \neq 4, 5$. Assume that $n \geq 6$. Since $\phi(L_n) = 2^m$, it follows that

$$L_{p} = 2^{l} \cdot p_{1} \cdot \dots \cdot p_{k}, \tag{8}$$

where $l \ge 0$ and $p_1 < \cdots < p_k$ are Fermat primes. Write $p_i = 2^{2^{\alpha_i}} + 1$. Clearly, $p_1 \ge 3$. The sequence $(L_n)_{n\ge 0}$ is periodic modulo 8 with period 12. Moreover, analyzing the terms L_s for $s=0,1,\ldots,11$, one notices that $L_s\ne 0 \pmod 8$ for any $s=0,1,\ldots,11$. It follows that $l\le 2$ in equation (8). Since $n\ge 6$, it follows that $L_n\ge 18$. In particular, $p_i\ge 5$ for some $i=1,\ldots,k$. From the equation

$$L_n^2 - 5F_n^2 = (-1)^n \cdot 4, \tag{9}$$

it follows easily that $5 \nmid L_n$. Thus, $p_i > 5$. Hence, $p_i = 2^{2^{\alpha_i}} + 1$ for some $\alpha_i \ge 2$. It follows that $p_i \equiv 1 \pmod 4$ and

$$p_i \equiv 4^{2^{\alpha_i-1}} + 1 \equiv (-1)^{2^{\alpha_i-1}} + 1 \equiv 2 \pmod{5}.$$

In particular, $\left(\frac{p_i}{5}\right) = \left(\frac{2}{5}\right) = -1$. Hence, by the quadratic reciprocity law, it follows that $\left(\frac{5}{p_i}\right) = -1$ as well. On the other hand, reducing equation (9) modulo p_i , it follows that

$$5F_n^2 \equiv (-1)^{n-1} \cdot 4 \pmod{p_i}.$$
 (10)

Since $p_i \equiv 1 \pmod{4}$, it follows that $\left(\frac{(-1)^{p-1}}{p_i}\right) = 1$. From congruence (10), it follows that $\left(\frac{5}{p_i}\right) = 1$, which contradicts the fact that $\left(\frac{5}{p_i}\right) = -1$.

(3) Since $\sigma(1) = 1 = 2^0$, $\sigma(3) = 4 = 2^2$, and $\sigma(21) = 32 = 2^5$, it follows that n = 1, 2, 4, 8 are solutions of equation (3). We show that these are the only ones. One can easily check that $n \neq 3, 5, 6, 7$. Assume now that there exists a solution of equation (3) with n > 8. Since $\sigma(F_n) = 2^m$, it follows easily that $F_n = q_1 \cdot \dots \cdot q_k$, where $q_1 < \dots < q_k$ are Mersenne primes. Let

 $q_i = 2^{p_i} - 1$, where $p_i \ge 2$ is prime. In particular, $q_i \equiv 3 \pmod{4}$. Reducing equation (9) modulo q_i , it follows that

$$L_n^2 = (-1)^n \cdot 4 \pmod{q_i}. \tag{11}$$

Since $q_i \equiv 3 \pmod 4$, it follows that $\left(\frac{-1}{q_i}\right) = -1$. From congruence 11, it follows that $2 \mid n$. Let $n = 2n_1$. Since $F_n = F_{2n_1} = F_{n_1} L_{n_1}$ and since F_n is a square free product of Mersenne primes, it follows that F_{n_1} is a square free product of Mersenne primes as well. In particular, $\sigma(F_{n_1}) = 2^{m_1}$. Inductively, it follows easily that n is a power of 2. Let $n = 2^t$, where $t \ge 4$. Then, $n_1 = 2^{t-1}$. Moreover, since $L_{n_1} \mid F_{n_1} L_{n_1} = F_n$, it follows that L_{n_1} is a square free product of Mersenne primes as well. Write

$$L_{n_1} = q_1' \cdot \dots \cdot q_l', \tag{12}$$

where $q_i' < \cdots < q_i'$. Let $q_i' = 2^{p_i'} - 1$ for some prime number p_i' . The sequence $(L_n)_{n \geq 0}$ is periodic modulo 3 with period 8. Moreover, analyzing L_s for $s = 0, 1, \ldots, 7$, one concludes that $3 \mid L_s$ only for s = 2, 6. Hence, $3 \mid L_s$ if and only if $s \equiv 2 \pmod{4}$. Since $t \geq 4$, it follows that $8 \mid 2^{t-1} = n_1$. Hence, $3 \nmid L_n$ and $3 \nmid L_{n_1/2}$. In particular, $p_1' > 2$. We conclude that all p_i' are odd and $q_i' = 2^{p_i'} - 1 \equiv 2 - 1 \equiv 1 \pmod{3}$. From equation (12), it follows that $L_{n_1} \equiv 1 \pmod{3}$. Reducing relation $L_{n_1} = L_{n_1/2}^2 - 2 \pmod{3}$, it follows that $1 \equiv 1 - 2 \equiv -1 \pmod{3}$, which is a contradiction.

(4) We first show that equation (4) has no solutions for which n>1 is odd. Indeed, assume that $\sigma(L_n)=2^m$ for some odd integer n. Let $p\mid n$ be a prime. By Lemma 2(2), we conclude that $L_p\mid L_n$. Since $\sigma(L_n)$ is a power of 2, it follows that L_n is a square free product of Mersenne primes. Since L_p is a divisor of L_n , it follows that L_p is a square free product of Mersenne primes as well. Write $L_p=q_1\cdots q_k$, where $q_1<\cdots < q_k$ are prime numbers such that $q_i=2^{p_i}-1$ for some prime $p_i\geq 2$. We show that $p_1>2$. Indeed, assume that $p_1=2$. In this case, $q_1=3$. It follows that $3\mid L_p$. However, from the proof of (3), we know that $3\mid L_p$ if and only if $s\equiv 2\pmod 4$. This shows that $p_1\geq 3$.

Notice that $L_p \equiv \pm 1 \pmod{2^{p_1}}$. It follows that $L_p^2 - 1 \equiv 0 \pmod{2^{p_1 + 1}}$. Since p is odd, it follows, by Lemma 1(4), that

$$L_p^2 - 5F_p^2 = -4 (13)$$

or $L_p^2 - 1 = 5(F_p^2 - 1)$. It follows that $F_p^2 - 1 \equiv 0 \pmod{2^{p_1 + 1}}$. Hence, $F_p \equiv \pm 1 \pmod{2^{p_1}}$. From Lemma 3(3), we conclude that $p \equiv \pm 1 \pmod{2^{p_1 - 1}}$. In particular,

$$p \ge 2^{p_1 - 1} 3 - 1. \tag{14}$$

On the other hand, reducing equation (13) modulo q_1 , we conclude that $5F_p^2 \equiv 4 \pmod{q_1}$, therefore $\left(\frac{5}{q_1}\right) = 1$. By; Lemma 2(1), it follows that $q_1 \mid F_{q_1-1}$. Since $q_1 \mid L_p$ and $F_{2p} = F_p L_p$, it follows that $q_1 \mid F_{2p}$. Hence, $q_1 \mid (F_{2p}, F_{q_1-1}) = F_{(2p, q_1-1)}$. Since $F_2 = 1$, we conclude that $p \mid q_1 = 1 = 2(2^{p_1-1}-1)$. In particular,

$$p \le 2^{p_1 - 1} - 1. \tag{15}$$

From inequalities (14) and (15), it follows that $2^{p_1-1}3-1 \le 2^{p_1-1}-1$, which is a contradiction.

Assume now that n > 4 is even. Write $n = 2^{t} n_{1}$, where n_{1} is odd. Let

$$L_n = q_1 \cdot \dots \cdot q_k, \tag{16}$$

53

where $q_1 < \cdots < q_k$ are prime numbers of the Mersenne type. Let $q_i = 2^{p_i} - 1$. Clearly, $q_i \equiv 3 \pmod{4}$ for all i = 1, ..., k. Reducing the equation $L_n^2 - 5F_n^2 = 4 \pmod{q_i}$, we obtain that $-5F_n^2 = 4 \pmod{q_i}$. Since $\left(\frac{-1}{q_i}\right) = -1$, it follows that $\left(\frac{5}{q_i}\right) = -1$. From Lemma 2(1), we conclude that $q_i \mid F_{q_i+1} = F_{2^{p_i}}$. We now show that $t \leq p_1 - 1$. Indeed, assume that this is not the case. Since $t \geq p_1$, it follows that $2^{p_i} \mid 2^t n_1 = n$. Hence, $q_1 \mid F_{2^{p_i}} \mid F_n$. Since $q_1 \mid L_n$, it follows, by Lemma 1(4), that $q_1 \mid 4$, which is a contradiction. So, $t \leq p_1 - 1$. We now show that $n_1 = 1$. Indeed, since $t+1 \leq p_1 \leq p_i$, $q_i \mid L_n \mid F_{2^n}$, and $q_i \mid F_{2^n}$, it follows, by Lemma 2(2), that $q_i \mid (F_{2^n}, F_{2^n}) = F_{(2^n, 2^n)} = F_{2^{t+1}}$. Hence, $q_i \mid F_{2^{t+1}} = F_{2^t} L_{2^t}$. We show that $n_1 = 1$. Indeed, since $n_1 \mid F_{2^n} \mid F_{2^n} \mid F_{2^{n+1}} \mid F_{2^n} \mid$

$$L_n = q_1 \cdot \cdot \cdot \cdot \cdot q_k \mid L_{2^t}$$
.

In particular, $L_{2^t} \ge L_n = L_{2^t n}$. This shows that $n_1 = 1$. Hence, $n = 2^t$.

Since n > 4; it follows that $t \ge 3$. It is apparent that $q_1 \ne 3$, since, as previously noted, $3 \mid L_s$ if and only is $s \equiv 2 \pmod{4}$, whereas $n = 2^t \equiv 0 \pmod{4}$. Hence, $p_i \ge 3$ for all i = 1, ..., k. Moreover, since $q_i = 2^{p_i} - 1$ are quadratic nonresidues modulo 5, it follows easily that $p_i \equiv 3 \pmod{4}$. In particular, if $k \ge 2$, then $p_2 \ge p_1 + 4$.

Now since $t \ge 3$, it follows, by Lemma 4, that

$$L_{2^t} \equiv 2^{t+1}a - 1 \pmod{2^{t+4}},\tag{17}$$

where $a \in \{3, 5\}$. On the other hand, from formula (16) and the fact that $p_2 \ge p_1 + 4$ whenever $k \ge 2$, it follows that

$$L_{2^t} = \prod_{i=1}^k (2^{p_i} - 1) \equiv (-1)^k \cdot (-2^{p_1} + 1) \equiv 2^{p_1} b \pm 1 \pmod{2^{p_1 + 4}}. \tag{18}$$

where $b \in \{1, 7\}$. One can notice easily that congruences (17) and (18) cannot hold simultaneously for any $t \le p_1 - 1$. This argument takes care of the situation $k \ge 2$. The case k = 1 follows from Lemma 3 and the fact that $t \le p_1 - 1$ by noticing that

$$2^{p_1} - 1 = L_{2^t} \equiv 2^{t+1} \cdot 3 - 1 \pmod{2^{t+4}}$$

implies $2^{p_1-t-1} \equiv 3 \pmod{2^3}$, which is impossible.

The above arguments show that equation (4) has no even solutions n>4. Hence, the only solutions are the announced ones. \Box

ACKNOWLEDGMENTS

I would like to thank the editor for his comments on a previous version of this paper and for pointing out various bibliographical references for the preliminary Lemmas 1-3. I would also like to thank an anonymous referee for suggestions which greatly improved the quality of this paper.

Financial support from the Alexander von Humboldt Foundation is gratefully acknowledged.

REFERENCES

- 1. R. D. Carmichael. "On the Numerical Factors of Arithmetic Forms $\alpha^n \pm \beta^n$." Ann. of Math. 15 (1913-1914):30-70.
- 2. J. H. E. Cohn. "On Square Fibonacci Numbers." J. London Math. Soc. 39 (1964):537-40.
- 3. Peter Hilton, Jean Pedersen, & Luc Vrancken. "On Certain Arithmetic Properties of Fibonacci and Lucas Numbers." *The Fibonacci Quarterly* **33.3** (1995):211-17.
- 4. Eliot T. Jacobson. "Distribution of the Fibonacci Numbers Mod 2^k." The Fibonacci Quarterly **30.3** (1992):211-15.
- 5. T. Lengyel. "The Order of Fibonacci and Lucas Numbers." *The Fibonacci Quarterly* **33.3** (1995):234-39.
- 6. F. Luca. "Arithmetic Functions of Fibonacci Numbers." *The Fibonacci Quarterly* **37.3** (1999):265-68.
- 7. F. Luca. "Euler Indicators of Lucas Sequences." Bull. Math. Soc. Sc. Math. Roumanie, Tome 40, 88.3-4 (1997):151-63.
- 8. F. Luca. "On the Equation $\phi(x^m y^m) = x^n + y^n$." Bull. Irish Math. Soc. 40.1 (1998):46-55.
- 9. F. Luca. "On the Equation $\phi(|x^m + y^m|) = |x^n + y^n|$." Indian J. of Pure and App. Math 30.2 (1999):183-97.
- 10. F. Luca. "Pascal's Triangle and Constructible Polygons." To appear in Utilitas Mathematica.
- 11. F. Luca. "On the Equation $\phi(|x^m y^m|) = 2^n$." To appear in Math. Bohemica.
- 12. Wayne L. McDaniel. "The g.c.d. in Lucas Sequences and Lehmer Number Sequences." *The Fibonacci Quarterly* **29.1** (1991):24-29.
- 13. D. D. Wall. "Fibonacci Series Modulo m." Amer. Math. Monthly 67 (1960):525-32.

AMS Classification Numbers: 11A25, 11B39
