
NONEXHAUSTIVE GENERALIZED FIBONACCI TREES
IN UNEQUAL COSTS CODING PROBLEMS

Julia Abrahams
Center for Discrete Mathematics and Theoretical Computer Science

Rutgers University, Piscataway, NJ 08854-8018
(Submitted May 1998)

1. INTRODUCTION AND BACKGROUND

Fibonacci trees and exhaustive generalized Fibonacci trees have been introduced and studied
in connection with a particular unequal costs coding application by Horibe [6], Chang [2], and the
author [1], The k^ exhaustive generalized Fibonacci tree, S(k), by definition has S(k-c(i)) as
its Ith leftmost subtree descending from the root, i = 1,2,..., r, where the c(i) are relatively prime
positive integers ordered in monotonically nondecreasing order in i, and the initialization is that
S(k), k = 1,2,..., c(r), are all single root nodes. The term "exhaustive" indicates that each interior
node of the r-ary tree has exactly r descendants, and is referred to as a "full" node. For r - 2,
c(l) = l, c(2) = 2, these trees are Horibe's Fibonacci trees [6]. Throughout this paper, the
notation S(k) will refer to the k^ exhaustive generalized Fibonacci tree for some fixed set of
c(i), / = 1,2,..., r, and g(k) will refer to the number of leaf nodes in $(k).

The exhaustive generalized Fibonacci trees when interpreted as code trees solve Varn's [10]
unequal costs coding problem under the requirement that the code trees be exhaustive [1]. In
particular, each of the c(i), now interpreted as the cost of the corresponding code symbol, is
associated with one of the r code symbols which label the code tree branches successively in left
to right order. The Ith leftmost branch is labeled with the Ith least costly code symbol. A path
from the root to a leaf node describes the sequence of code symbols, or, that is, the codeword,
which represents the source symbol associated with that leaf node. The cost of a (leaf or interior)
node is the sum of the costs of the branches contained in the path from the root to the node. It is
assumed that each source symbol arises with equal probability, and Varn's problem is to find the
code tree which minimizes the average codeword cost.

A number of authors in addition to Varn have addressed the nonexhaustive unequal costs
coding problem for equiprobable source symbols from the algorithmic point of view for general
sets of costs [3], [4], [5], [8], or for specific cost assignments [7] or have obtained bounds on the
resulting minimum average cost [9]. The term "nonexhaustive" indicates that each interior node
of the tree has at least 2 and at most r descendants. The descendant branches which are present
are the leftmost or least costly descendants. An interior node with fewer than r descendants is
referred to as a "nonfull" node. A nonexhaustive code tree can have lower average codeword
cost than if the exhaustive requirement is imposed, hence the interest in the nonexhaustive case.
However, the algorithms to construct optimal nonexhaustive code trees are much more compli-
cated than Vam's simple algorithm for the exhaustive case.

Because recognizing the exhaustive generalized Fibonacci trees as Varn code trees for the
exhaustive case reveals an elegant structure underlying the sequence of Varn code trees, it would
be of interest to identify a similar recursive tree construction for the nonexhaustive case. It turns
out that it is possible to do this not for Varn's original problem, but for a close variant of it. While

2000] 127

NONEXHAUSTIVE GENERALIZED FIBONACCI TREES IN UNEQUAL COSTS CODING PROBLEMS

Vam looks for optimum codes in the minimum average codeword cost sense, the problem of
interest here will be to look for optimum codes in the sense of minimizing the maximum
codeword cost, called the minimax cost. It is not hard to see that in the exhaustive case, Varn's
algorithm finds optimum code trees in both senses, that is, the minimum average codeword cost
tree is also the minimax tree. But this is not the case for nonexhaustive codes. Perl et al. [8] give
a simple algorithm for the nonexhaustive minimax problem as a "remark" in their paper otherwise
concerned with the minimum average codeword cost case. So, as we'll see, it is the minimax
version of Varn's problem which has the Fibonacci-like structure.

In the exhaustive case, Varn's [10] algorithm constructs the minimum average codeword cost
tree of N leaf nodes, where (N-l)/(r~l) is an integer, M, the number of interior nodes in the
tree including the root. Starting with an r-ary tree from whose root node descend r leaf nodes
labeled from left to right by c(l), c(2),..., c(r), the costs corresponding to the code symbols, select
the lowest cost leaf node, say c, and let descend from it r leaf nodes assigned costs from left to
right of c + c(l),c + c(2), ...,c + c(r). Continue by selecting the lowest cost leaf node from the
new tree until there are N leaf nodes. (Ties are broken by first selecting leftmost leaf nodes with
respect to their equal cost sibling leaf nodes and otherwise arbitrarily.) Clearly the resulting tree
is also a minimax exhaustive tree because splitting any other node besides the least cost node will
create a leaf node of greater cost.

The nonexhaustive algorithms for the minimum average cost trees of Varn [10], Perl et al.
[8], Cot [4], Golin and Young [5], and Choi and Golin [3] are all rather complicated. Perl, Garey,
and Even's [8] algorithm for the minimax tree is simpler than any of the minimum average cost
algorithms. A new leaf node can be added to a tree by either "branching" or "adding." In branch-
ing, a leaf node of least cost, say c, gets descending from it 2 leaf nodes assigned costs from left
to right of c + c(l) and c + c(2). In adding, a nonfull interior node of some cost c which has
2 < / < r leaf nodes descending from it gets an additional descendant leaf node of cost c + c(i +1).
The minimax algorithm is to branch or add, creating the least cost next leaf node at each stage.

While Varn's [10] original problem statement and algorithms assumed arbitrary positive costs,
the recursive method described here applies to arbitrary positive integer code symbol costs
c(l) < c(2) <>•< c(r), ordered without loss of generality, whose greatest common divisor is 1. In
the binary case, all code trees are exhaustive, and the exhaustive case for all r has been treated
previously by the author [1]. The nonexhaustive approach reduces to the exhaustive approach for
binary problems. We can permit r to be arbitrarily large and thus include the case of r infinite in
the limit although the limiting case will never be achieved. Since common factors shared by all
costs do not affect the form of the optimal code tree, the costs considered here are essentially all
rational costs or all sets of rational costs with a common irrational multiplier.

2, CONSTRUCTING NONEXHAUSTIVE GENERALIZED
FIBONACCI TREES RECURSIVELY

First, let's define nonexhaustive generalized Fibonacci trees through a recursive construction.
Then, in Theorem 1, an equivalent construction, based on the method of "types" for constructing
exhaustive generalized Fibonacci trees, will be given. As in the exhaustive case, the k^ tree in the
constructed sequence of nonexhaustive trees, T(k), will have T(k-c(i)) as its Ith leftmost sub-
tree. However, now the initialization will be 7(1)'= 7(2) = • • • = T(c(2)) each consisting of a

128 [MAY

NONEXHAUSTIVE GENERALIZED FIBONACCI TREES IN UNEQUAL COSTS CODING PROBLEMS

single root node. Define the k^ nonexhaustive generalized Fibonacci tree, T(k), by this recursive
construction. Throughout this paper, the notation T{k) will refer to the k**1 nonexhaustive gener-
alized Fibonacci tree for some fixed set of c(i), / = 1,2,..., r, and f(fc) will refer to the number of
leaf nodes in T(k).

An example follows in which the cQ) are interpreted as costs and assigned corresponding to
the branches present in the tree. Let c(l)•= c(2) = 2, c(3) = 5. The same example will be used
throughout the paper. The trees are described by labeling leaf nodes with their costs, listing them
in left to right order with sibling nodes separated by + signs, and using parentheses to indicate
depth in the tree from the root. Thus, for example, ((4 + 4) + (4 + 4) + 5) denotes a nonexhaustive
3-ary tree with 5 leaves; in left to right order, with the root at the top, they are at depths 2, 2, 2,
2, 1, respectively, and labeled as 4, 4, 4, 4, 5 from left to right. The root node is full but the two
non-root interior nodes do not have a rightmost descendant. The first few trees for the example
are given in Table 1. The initializing trees, represented by 0 in this notation, do not appear.

TABLE 1. Recursively generated trees for the example* c(t) = c(2) = 2, c(3) = 5

k

3

4

5

6

7

T(k)
(2 + 2) 1

(2 + 2)

((4 + 4) + (4 + 4))

((4 + 4) + (4 + 4)+5)

(((6 + 6) + (6 + 6)) + ((6 + 6) + (6 + 6))+5)

Note that the subsequence of trees is not indexed by the number of leaf nodes which it has
and that not every tree is distinct in form. The number of leaf nodes in T{k\ f(k) is given by

/(*)= Z/(*-<#)),
l</<r

where
/ (l) = / (2) = - = /(c(l)) = l.

By the method of generating functions,

F(X)= ^xvw=(x+x2+-.-+x<i))/fi-]»y(7)
l<fc<oo ^ \<i<r)

and the f(k) can be read off as coefficients of xk. For the example,

F(x) = (x + x 2) / (l -2x 2 -x 5) = x + x2 + 2x3+2x4+4x5 + 5x6+9x7 + ---.

The nonexhaustive generalized Fibonacci trees can also be generated by a second method
which makes use of the method of "types" for generating the exhaustive generalized Fibonacci
trees. The k^ exhaustive generalized Fibonacci tree S(k) is also obtained in [1] by using the con-
cept of leaf node "types," essentially a mechanism for keeping track of the relative cost of each
leaf node until it is one of the lowest cost leaf nodes and one of the next possible leaf nodes to
split in Yarn's exhaustive algorithm. (All tied leaf nodes "split" at once in the method of types, but

2000] 129

NONEXHAUSTIVE GENERALIZED FIBONACCI TREES IN UNEQUAL COSTS CODING PROBLEMS

split serially in Varris algorithm. Thus, the set of values for number of leaf nodes in a tree
obtained by Vam's algorithm, N = M{r -1) +1, can include values of N not equal to g(k) for any
k.) Each exhaustive tree will have c(r) "types" of leaf nodes, denoted by a(l),a(2), ...,a(c(r)).
The tree S(k +1) is obtained from S(k) by replacing leaf nodes in S(k) of type a(l) by r
descendant nodes of types a{c(\)\a(c(2)\ ...,a(c(r)) in left to right order and by replacing leaf
nodes in S(k) of type a(J) by leaf nodes of type a(J -1), j = 2,3,..., c(r). The construction starts
with S(l) which consists of a single root node of type a(c(r)). The equivalence between the
recursive construction used to define the exhaustive generalized Fibonacci tree S(k) and the con-
struction by the method of types, as well as the fact that the type associated with a leaf node in
S(k-c(i)) is unchanged in S(k)9 was proved by Horibe [6] for r - 2, c(l) = 1, c(2) = 2, and the
argument goes through to the general case straightforwardly. The exhaustive generalized Fibo-
nacci trees corresponding to the nonexhaustive generalized Fibonacci example of Table 1 are
given in Table 2, with leaf nodes labeled by type rather than cost.

TABLE 2. Exhaustive trees for the example, c(l) = c(2) = 2, c(3) = 5

k

6

7

8

9

10

S{k)

(a(2)+a(2) + a(5))

(a (l)+ a (l)+ a (4))

((a(2) + a(2) + a(5)) + (a(2) + a(2)+a(5)) +a(3))

((a(l) + a(l) + <J(4)) + (a(l)+a(l) +a(4)) +a(2))

(((a(2)+a(2)+a(5)) + (a(2)+a(2)+a(5))+aW) + ^

Theorem 1: The nonexhaustive generalized Fibonacci tree T(k) is given by the corresponding
exhaustive generalized Fibonacci tree S(k + c(r)-c(2)) from which all leaf nodes except those of
types #(!), a(2),..., a(c(2)) have been deleted.

Proof of Theorem 1: This correspondence can be proved by induction. The induction
initialization is immediate from the initialization of the recursively constructed generalized Fibo-
nacci tree sequences {T(k)} and {S(k)}. Let S*{k) denote S(k) from which all leaf nodes
except those of types a(l),a(2), ...,a(c(2)) have been deleted. Assuming that T(k-c(i)) =
S*(k-c(i) + c(r)-c(2)) for i = l,...,r, we need to show that T(k) = S*(k + c(r)-c(2)). First,
note that T(k) has T(k~c(i)) as its Ith leftmost subtree by definition of {T(k)} as a recursively
generated sequence of trees so that it has S*(k - c(i) + c{r) - c(2)) as its /th leftmost subtree by the
induction hypothesis. Then, note that S*{k + c(f) - c(2)) has S*(k - c(i) + c(r) - c(2)) as its Ith

leftmost subtree by definition of {£(£)} as a recursively generated sequence of trees and because
deleting leaf nodes of type a(J) from S(k + c(r) - c(2)) corresponds to deleting leaf nodes of type
a(J) from S(k-c(i) + c(r)-c(2)), / = l,...,r. Therefore, T(k) and ST(k + c{r)-c{2)) both have
S\k - c(i) + c(r) - c(2)) as their Ith leftmost subtrees and T(k) = S\k + c{r) - c{2)). D

The maximum codeword cost in the nonexhaustive generalized Fibonacci tree T(k) will be
given by the cost of a leaf of type a(c(2)) in the corresponding exhaustive generalized Fibonacci
tree S(k + c(r) - c(2)) if it appears. In the exhaustive tree S(k), a leaf of type a(J) will cost
k+j-(c(r) + l). Thus, the maximum codeword cost for T(k) will be k-\ assuming a leaf of

130 [MAY

NONEXHAUSTIVE GENERALIZED FIBONACCI TREES IN UNEQUAL COSTS CODING PROBLEMS

type a(c(2)) appears in S(k + c(r) - c(2)). If no leaf of type a(c(2)) appears in S(k + c(r) - c(2)),
as in the example for S(7), then the maximum codeword cost will be given by the cost of a leaf of
type a(c(2)-l) ora(c(2)-2) or ... or a(2) whichever is the leaf of type of highest index less than
or equal to c(2) which appears. Therefore, the maximum codeword cost for T(k) is in the range
[k - c{2) +1, k -1] for k > c(2). For sufficiently large k, there will always be a leaf of type a(c(2))
in T(k) and the maximum codeword cost will be k -1.

3. MINIMAX OPTIMALITY

Now, let's show that nonexhaustive generalized Fibonacci trees are optimal nonexhaustive
minimax trees of the same number of leaf nodes. We will use the characterization of the
nonexhaustive generalized Fibonacci tree T(k) as the exhaustive generalized Fibonacci tree
S{k + c(r)-c(Tj) with leaf nodes of type of index greater than e(2) deleted, given in Theorem 1.
The demonstration does not use Perl, Garey, and Even's optimal nonexhaustive minimax algo-
rithm [8]; instead, we'll use a new optimal nonexhaustive minimax algorithm which is in the same
spirit as Varn's original nonexhaustive algorithm [10] for optimality in the sense of minimum aver-
age cost. The algorithm will follow from Theorem 2, and is contained in the corollary to
Theorem 2.

In the following, the notation SQ will refer to an optimal exhaustive minimax code tree, T0 an
optimal nonexhaustive minimax code tree, Sx some other exhaustive code tree, and Tx some other
nonexhaustive code tree, all for the same fixed set of costs c(i), i = 1,2,..., r.

Theorem 2: An exhaustive tree S0 with Ns = M(r -1) +1 leaf nodes and M interior nodes
including the root is an optimal code tree in the sense of minimizing the maximum codeword cost
if it is obtained from an optimal minimax nonexhaustive tree T0 with NT < Ns leaf nodes by
adding r-i descendant leaf nodes to each interior node of T0 from which i leftmost nodes
descend, 2<i<r.

Lemma (Varn [10]): Let *Si be an exhaustive tree with Ns leaf nodes and M interior nodes
including the root where Ns = M(r -1) +1. Denote the costs of the M interior nodes of Sx by
zx < z2 < • • • < zM. Let $0 be an optimal exhaustive tree with Ns leaf nodes and M interior nodes
including the root. Denote the costs of the M interior nodes of S0 by yY < y2 < • • • < yM • Then
ym<zmform = l,...,M.

Proof of Theorem 2: The proof is by contradiction. Suppose the exhaustive code tree SQ

with Ns leaf nodes, obtained from the optimal nonexhaustive code tree T0 by adding descendant
leaf nodes to nonfull interior nodes of T0, is not optimal but there is another exhaustive tree S{

with Ns leaf nodes which is optimal. Construct a nonexhaustive tree Tx from Sx by retaining all
of the interior nodes of Sx and only the two leftmost or least cost descendants of each of the
interior nodes. Then the maximum codeword cost of Tx is wM + c(2) where wM is the most
costly interior node of Sx. If 5i is optimal, then wM +c(2) < xM +c(i) for 2 <i <r , from the
lemma, where xM is the most costly interior node of S0, and because c(2) < c(i). But the maxi-
mum codeword cost of T0y where S0 is exhaustive and obtained from T0 by adding descendant
leaf nodes to nonfull interior nodes of T0, is xM+c(i) for some i, where 2<i<r. Therefore, the

2000] 131

NONEXHAUSTIVE GENERALIZED FIBONACCI TREES IN UNEQUAL COSTS CODING PROBLEMS

maximum codeword cost of 7J is less than or equal to the maximum codeword cost of T0, contra-
dicting the given optimality of TQ. Therefore, it must be that S0 is optimal. D

Corollary: A nonexhaustive tree T0 with NT leaf nodes is an optimal code tree in the sense of
minimizing the maximum codeword cost if it is obtained from an optimal exhaustive tree SQ with
Ns > NT leaf nodes by deleting r-im rightmost descendant leaf nodes from each of the M interior
nodes including the root of SQ for some im, 2 < im < r, m - 1,..., M.

Proof of Corollary: Since by Theorem 2 it is possible to obtain exhaustive SQ from non-
exhaustive TQ by adding descendant leaf nodes to nonfiill interior nodes of T0, it is also possible to
obtain T0 from S0 by deleting rightmost or greatest cost descendant leaf nodes from full interior
nodes of S0, repeating until the desired number of leaf nodes NT is left. Note that no more than
r - 2 leaf nodes from any interior node of S0 can be deleted because, as in Theorem 2, SQ has the
same set of interior nodes as T0. D

The algorithm implicit in the corollary for optimal nonexhaustive code trees in the minimax
sense is completely analogous to Vam's algorithm for optimal nonexhaustive code trees in the
minimum average cost sense. In each case, the algorithm is to examine all candidate optimal
exhaustive code trees such that deleting leaf nodes, while maintaining each interior node with at
least two descendants, leads to a nonexhaustive tree with NT leaf nodes, and to select the least
costly of these. In each case, the question is to determine the appropriate value for Ns, the
number of leaf nodes in the optimal exhaustive code tree from which the optimal nonexhaustive
tree is constructed. In fact, a search over many candidate optimal exhaustive trees, S0, is neces-
sary to identify Ns in the minimum average codeword cost problem in Varn's algorithm for the
nonexhaustive case. However, in the minimax codeword cost problem, as we'll see in Theorem 3,
such a search is not necessary.

Theorem 3: If NT = f(k), where f(k) is the number of leaf nodes in a nonexhaustive general-
ized Fibonacci tree T(k) for some k, then a nonexhaustive code tree TQ with NT leaf nodes is an
optimal code tree in the sense of minimizing the maximum codeword cost if it is obtained from an
exhaustive generalized Fibonacci tree S(k + c(r) - c(2)) with Ns = g(k + c(r)-c(2))>NT leaf
nodes, by deleting all leaf nodes except those of types a(l),a(2),...,a(c(2)) from S(k+c(r)-c(2)).

Proof of Theorem 3: Construct T0 by the algorithm of the corollary, that is, consider as
candidates all optimal exhaustive trees S0, such that deleting Ns- NT rightmost leaf nodes from
S0, where SQ has Ns leaf nodes, leaves a nonexhaustive tree T with the same set of interior nodes
as S0 and with NT leaf nodes, and select the least costly of the resulting trees J a s T0. Suppose
we start with an optimal exhaustive tree S0 which is not S(k+ c(r)-c(2)). The number of leaf
nodes in SQ is Ns and either Ns > g(k + c(r)-c(2))> NT or g(k + c(r) - c(2)) > Ns > NT. (If
Ns - g(kf) for some k', then S0 is an exhaustive generalized Fibonacci tree, but, for other values
of Ns = M{r -1) +1, S0 is obtained by using Varn's algorithm but is not an exhaustive Fibonacci
tree. For example, ((4+ 4+ 7)+ 2+ 5) is an optimal exhaustive tree, but not an exhaustive gen-
eralized Fibonacci tree, for the example.)

Suppose first that Ns > g(k + c(r) - c(2)). We will show that the resulting cost of deleting
Ns - NT most costly leaf nodes from SQ is greater than the resulting cost of deleting g(k + c(r) -
c(2))-NT most costly leaf nodes from S(k + c(r) - c{2)). For S(Jc + c(r) - c{2)), let n be the

132 [MAY

NONEXHAUSTIVE GENERALIZED FIBONACCI TREES IN UNEQUAL COSTS CODING PROBLEMS

number of leaf nodes of types of index < c(2), and let s be the number of non-root interior nodes.
Then S(k + c(r) - c(2)) has g(k + c(r) - c(2)) = r - s+ sr leaf nodes of which r-s + sr-n are of
types of index > c(2). Then S0 has Ns = r - s + sr + v(r - 1) leaf nodes and s + v non-root interior
nodes for some 'v which is >1 since Ns > gtfc + c(r)-c(2)). Of these leaf nodes, r-s + sr +
v(r-l)-n need to be deleted from S0 in order to leave n leaf nodes. Compare this with the
r-s-sr-n leaf nodes of types of index >c(2) which need to be deleted from S(k + c(r)-c(2))
in order to leave n leaf nodes. But S(k + c{r)-c(2)) and S0 have r-s + sr-v leaf nodes in
common which have the same costs in both trees, and S0 has vr expensive leaf nodes which do
not appear in S(k+c(r)-c(2)), and S(k + c(r)-c(2)) has v inexpensive leaf nodes which do not
appear in SQ. This is because v leaf nodes in S(k + c(r) - c(2)) are instead full interior nodes in SQ

and the two trees are otherwise the same since they are both optimal exhaustive trees generated
by splitting least cost leaf nodes as in Yarn's algorithm. Deleting r - s + sr + v(r -1) - n leaf nodes
from SQ and r-s-sr-n leaf nodes from S(k + c(f) - c(2)), we can only delete at most v(r - 2)
of the expensive leaf nodes from $0 while maintaining all the interior nodes of S0. Since we need
to delete v (r - l) more leaf nodes from SQ than from S(k + c(r)-c(2)) and only v(r-2) of them
can be expensive5 we must delete v of the leaf nodes of common cost (or inexpensive leaf nodes).
Thus, the resulting cost obtained from S(k+c(r)-c(2)) is less than or equal to the resulting cost
obtained from SQ.

Similarly, if g(k + c(r) - c(2)) > Ns, the resulting cost of deleting g(k + c(r) - c(2)) - NT

most costly leaf nodes from S(k +c(r)~c(2)) is less than the resulting cost of deleting Ns - NT

most costly leaf nodes from S0. For S(k+c(r)-c(2))9 let n be the number of leaf nodes of types
of index <c(2), and let s be the number of non-root interior nodes. Then S(k + c(r)-c(2)) has
g(k + c(r)-c(2)) = r — s + sr leaf nodes of which r-s + sr-n are of types of index >c(2).
Then S0 has Ns=r-s + sr-v(r-l) leaf nodes and s—v non-root interior nodes for some v
which is > 1 since g(k + c(r) - c(2)) > Ns. Of these leaf nodes, r-s + sr-v(r-l)-n need to be
deleted from SQ in order to leave n leaf nodes. Compare this with the r-s + sr-n leaf nodes of
types of index >c(2) which need to be deleted from S(k + c(r)-c(2)) in order to leave n leaf
nodes. Thus, v (r - l) fewer leaf nodes need to be deleted from S0 than from S(k+c(r)-c(2))
in order to leave n leaf nodes in each case. But S(k + c{r)-c(2)) and S0 have r-s + sr-
v(r -1) - v leaf nodes in common which have the same costs in both trees, and £0 has v inexpen-
sive leaf nodes which do not appear in S(k + c(r)-c(2)), and S{k + c(r) - c{2)) has vr expensive
leaf nodes which do not appear in SQ. This is because v leaf nodes in SQ are instead full interior
nodes in 8(k + c(r)-c(2)) and the two trees are otherwise the same since they are both optimal
exhaustive trees generated by splitting least cost leaf nodes as in Vam's algorithm. Deleting
v(r - l) more leaf nodes from S(k + c(r)-c(2)) than from SQ, we delete fewer than v(r-2) of
the vr expensive leaf nodes and more than v of the leaf nodes of common cost (or inexpensive leaf
nodes), thus resulting in a tree obtained from S(k + c(r)-c(2)) with maximum codeword cost
less than or equal to that obtained from S0, and Theorem 3 follows. •

Note that the corresponding argument breaks down for minimum average cost codes, for
which all leaf node costs, not just the maximum leaf node cost, enter into the resulting tree cost
calculation, and the argument in the proof of Theorem 3 does not hold. For the example, S(S) =
((4 + 4 + 7) + (4 + 4 + 7) + 5) = ((a(2) + a(2) + a(5)) + (a(2) + a{2) + a(5)) + a(3)). We can select

2000] 133

NONEXHAUSTIVE GENERALIZED FIBONACCI TREES IN UNEQUAL COSTS CODING PROBLEMS

w = 4 so that deleting the r - s + st - n = 3 leaf nodes of type of index > 2 leaves T0 = ((4 + 4) +
(4 + 4)), an optimal minimax tree of n = 4 leaf nodes. It has maximum codeword cost 4, the
minimax optimal value. In contrast, consider S0 - ((4 + 4 + 7) + 2 + 5), an optimal exhaustive tree
generated by splitting least cost leaf nodes as in Varn's algorithm, but not an exhaustive general-
ized Fibonacci tree. Theorem 3 says that T0 cannot be obtained from SQ by deleting leaf nodes.
In particular, the v = 1 leaf node in SQ of cost 2 is a full interior node (4 + 4 + 7) in S(S) of vr = 3
leaf nodes. Deleting v(r - l) = 2 fewer leaf nodes from S0 than from S(S) generates the tree
((4+ 4)+ 2+ 5) which, with a maximum codeword cost of 5, is not minimax optimal. However,
((4 + 4) + 2 + 5) is the optimal tree in the minimum average cost sense [8], with an average cost of
15/4, and compare this with T0, with an average cost of 4.

Theorem 4: The nonexhaustive generalized Fibonacci trees are the optimal nonexhaustive code
trees for the minimax cost problem for the same number of leaf nodes.

Proof of Theorem 4: The proof is an immediate consequence of Theorems 1 and 3. D

Theorem 4 provides an elegant characterization of optimal nonexhaustive minimax code trees
in terms of nonexhaustive generalized Fibonacci trees. Its proof makes use of three intermediate
results of independent interest: the equivalence between the recursive construction and the con-
struction by the method of types for nonexhaustive generalized Fibonacci trees in Theorem 1; the
new Varn-like algorithm for optimal nonexhaustive minimax code trees in the Corollary to
Theorem 2; and the result from Theorem 3 that a search over a set of candidate optimal exhaus-
tive code trees from which to generate the optimal nonexhaustive tree is not necessary in the
Varn-like algorithm for the minimax codeword cost problem (although it is necessary in the Varn
algorithm for the minimum average codeword cost problem). Instead, from Theorem 3 we know
exactly which highest cost leaf nodes, those of type of index > c(2), are to be deleted from exactly
which optimal exhaustive minimax tree, S(k + c(r) - c(2)), in order to obtain the optimal non-
exhaustive minimax tree T0 (when the desired number of leaf nodes in T0 is f(k)).

Under certain conditions, minimax code trees are also minimum average cost code trees, and
in these cases the generalized Fibonacci structure of the minimax code trees applies to the
minimum average cost code trees as well. The algorithm of Perl et al. [8] for minimum average
cost trees involves two stages, extension and mending, and their algorithm for minimax trees is a
variant of the extension stage. Thus, whenever mending is unnecessary and whenever the
extension stages give the same tree for both problems, the minimax code tree is also the minimum
average cost code tree. A sufficient condition on the code symbol costs for the mending stage to
be unnecessary in the minimum average cost problem is that any of the following three
(inequalities holds [8]: (i) r < 3; (ii) c(l) + c(2) < c(3); (iii) c(3) = c(4) =... = c(r). In the exten-
sion algorithm for minimum average cost trees, a comparison is made between c(a) + c(l) + c(2)
and c(b) + c(i) for some i > 2, where c(a) is the cost of a least cost leaf node a and c(b) is the
cost of some nonful! interior node b, in order to choose the next leaf node to introduce in forming
the tree of N +1 leaf nodes from the tree of TV leaf nodes. If c(a) + c(l) + c(2) is least, we branch
a, and otherwise we add to b. In the variant of the extension algorithm for minimax cost trees,
the equivalent comparison is made between c(a) + c(2) and c(b) + c(i). Thus, whenever any of
these sufficient conditions is satisfied by the costs, and the costs are such that the variant of the
extension algorithm for minimax codes and the original extension algorithm for minimum average

134 [MAY

NONEXHAUSTIVE GENERALIZED FIBONACCI TREES IN UNEQUAL COSTS CODING PROBLEMS

cost codes both yield the same results from their respective comparison stages, that is, whenever
c(a) + c(l) + c(2) and c(a) + c(2) are both either less than or greater than all candidate c(b) + c(i)
expressions, minimax and minimum average cost code trees are the same, and the minimum
average cost tree sequence shares the nice recursive structure of the minimax tree sequence. This
is the case for Part's [7] costs, c(i) - /, / = 1,2,..., when Nis an integer power of 2, and his paper
includes the recursive tree sequence structure. The example costs of c(l) = c(2) = 2, c(3) = 5
satisfy the sufficient conditions (i) or (ii), however not the comparison conditions even for small
N. The tree ((4 + 4) + 2 + 5) is minimum average cost [8] but ((4 + 4) + (4 + 4)) is minimax. Both
are obtained by extending ((4 + 4) + 2), in the former by noting that c(a) + c(l) + c(2) > c(b) + c(i),
and in the latter, c(a) + c(2) < c(b) + c(i)9 where c(a) = 2, c(b) = 0, and c(i) = c(3) in both cases.

REFERENCES

1. J. Abrahams. "Vara Codes and Generalized Fibonacci Trees." The Fibonacci Quarterly
33.1 (1995):21-25.

2. D. K. Chang. "On Fibonacci *-ary-Trees." The Fibonacci Quarterly 243 (1986):258-62.
3. S.-N. Choi & M. J. Golin. "Lopsided Trees: Analyses, Algorithms, and Applications (Ex-

tended Abstract)." Hong Kong University of Science and Technology Computer Science
Department Preprint, 1994.
N. Cot. "Characterization and Design of Optimal Prefix Codes." Thesis, Stanford Electrical
Engineering Department, 1977.
M. J. Golin & N. Young. "Prefix Codes: Equiprobable Words, Unequal Letter Costs." SIAM
J. Comput 25 (1996):1281-92.
Y. Horibe. "Notes on Fibonacci Trees and Their Optimality." The Fibonacci Quarterly 21.2
(1983):118-28.
Y. N. Part. "Variable Length Tree Structures Having Minimum Average Search Time."
Comm. ACM"12 (1969):72-76.
Y. Perl, M. R. Garey, & S. Even. "Efficient Generation of Optimal Prefix Code: Equiprob-
able Words Using Unequal Cost Letters." JACM22 (1975):202-14.

9. S. A. Savari. "Some Notes on Yarn Coding." IEEE Trans. Inform. Th. 40 (1994):181-86.
10. B. F. Yarn. "Optimal Variable Length Codes (Arbitrary Symbol Cost and Equal Code Word

Probabilities)." Inform. Contr. 19 (1971):289-301.
AMS Classification Numbers: 11B39,94A45

2000] 135

