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INTRODUCTION 

In [7], two families of polynomials {Fk J and {Gk „} in k indeterminates were defined: 

^,o(0 = 0, 
FM(t) = l, 
FkJt) = Fk_ln(t),\<n<k, 

P'k,„(t) = fdtJ.Fk„_J(t),n>k, 
y=i 

whereto (/„..., tk). 

Gk,o-k> 
Gk,i = h, 

GKn = Gk_ln,\<n<k, 
k 

Gk,n = Y.tjGk,n-j,n^k, 
j=i 

There it was pointed out that these two families generalize the Fibonacci and Lucas polynomials 
(see [3], e.g.). In the course of [7], they arose in a natural way in the context of a subgroup of the 
group of multiplicative arithmetic functions (see [8], e.g.); the group operation is the convolution 
product. The subgroup in question is sometimes called the rational subgroup of the group of 
multiplicative functions (RMF) (e.g., see [1]). It is the subgroup generated, under convolution by 
the completely multiplicative functions (CMF), those multiplicative functions y which satisfy the 
identity y{m)y{n)-y(mri) Vm,nGN9 where the product, this time, is the pointwise product. 
These CMF can also be described as those multiplicative functions which are completely deter-
mined by their values at primes. The RMF can be described as those multiplicative functions 
which are completely determined by their values on a finite number of prime powers for each 
prime p. 

In [7], Corollary 1.3.2, it is shown that the rational group RMF is a(n uncountably generated) 
free abelian group.1 The group minus the identity thus splits into two disjoint subsets, the free 
semigroup generated by the CMF's—call these the positive functions, and the set of their 
inverses—call these the negative functions. It is a consequence of the fact that elements are 
determined locally by their values on finitely many prime powers for each prime p, that there is 
associated with each pair consisting of a positive function x a n^ its inverse x~l a unique monk 
polynomial of degree k9 PTtP(t)9 t = (tl9...9tk)9 with complex coefficients, and that k can be 
chosen to be the same for all primes/? [7]; that is, the set of ks is bounded. Moreover, every such 
polynomial determines such a pair of rational MP's. An RMF determined in this way will be said 
to be of degree k. It is then clear that the positive functions form a graded semigroup. 

lA consequence of this result and a result of Carroll and Gioia [2] is that the rational group is embedded in a 
torsion-free divisible group in the group of multiplicative arithmetic functions. 
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The role of the (recursive) family of polynomials {Fk n} is that, when evaluated at the coeffi-
cients (1, al9 ...,ak) of Pr,p(t), they give the values of y at the /1th powers of the prime p. Thus, 
the set {Fk n(t)} yields every possible positive RMF of degree k under the evaluation map on k-
tuples of complex numbers. A negative RMF (i.e., an inverse of a positive RMF) has a value 0 for 
all powers ofp greater than k, and for powers ofp less than or equal to k, the values are just the 
coefficients of P (t). 

The polynomials {Gk n(i)} are somewhat more elusive, but are closely related to the Fkt„. 
When k = 2 and Py p(t) = x2 -tx-l, then Fk n and Gktn are just the Fibonacci and Lucas poly-
nomials, respectively. In general, dGknldtl = nFkt„. From [7], we have the following generaliza-
tion of the Binet formulas which, moreover, gives relations among the roots of Pr,p(x; th . 
the values in the sequence y(pn) and the polynomials Fk n(t). Thus, letting 

. , ' * ) , 

A,=A(A„. 

we have that 

•,4)= 
i • 

4 • 
•• 1 

•• 4 
• 4-

&k,n~ &k,n(^h--

rW) = Fk,n*(Q = ̂ r-> 

-,4) = 

l 

4 • 
x\~2 • 

yt+k-2 

1 
•• 4 
•• 4-2 

in+k-2 

-txxl k-\ where the A7(t) = Xj are the k roots of the polynomial PrtP(x; tl9..., tk) = x' 
This is clearly a pleasant generalization of the Binet equations for k = 2; but more is true 

A 1k,n = CS¥(k,n) = ZXi • 4 

-U 

where YAj =w. These are just the complete symmetric polynomials of degree n in the Xt ([6], 
pp. 21 ffi). The Gk^n now become transparent: Gkt„(t(X)) = X[ + ...+An

k= PSP(A:, n). These are 
just the power symmetric polynomials of degree n in the Xj (see [6]). 

In Section 1, Theorem 2, it is shown that each Fki„+l can be rewritten as a sum of products of 
the GktJ with rational coefficients; this rewriting process has an inverse which rewrites each of the 
Gkn as sums of products of the FkJ with integer coefficients (Theorem 3). There is also a map 
which sends Fk^n+l and Gkn to symmetric polynomials in the roots of Py{x\ t), in the first case, a 
CSP(&, n\ in the second, a PSP(£, n). 

Fh k,n+l 

I 
Gk,n 

CSP(M) 
4 

PSP(M) 

All of these maps are invertible. This gives an effective process for rewriting the elements of the 
ring A" of symmetric polynomials of degree N regarded as the Z-algebra generated by CPS's as 
elements in A" regarded as the Q-algehm generated by the PSP's, and vice versa. In this way, the 
Fkn and the Gkn are identified with Schur polynomials in A". 
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There is also a number of relations among the two sets of polynomials Fktn and the Gkt„ 
which generalize the well-known relations among the Fibonacci and Lucas polynomials (e.g., see 
[4], or more conveniently [10], pp. 44-46). Those which have appeared in [7] will be listed for 
reference merely as Result without proof. 

In 1995, Glasson [5] showed that the Fibonacci and Lucas polynomials satisfy second-order 
partial differential equations. We generalize this result in Theorem 4, Section 2. Here we show 
that the partial differential equation Dx 1 - Z tjDj2 = mD2, where j = 1,..., k, is satisfied by Fkt n if 
JW = 2, and by Gkt„ ifm= 1. 

In Section 3, Theorem 5, we show that the RMF's are just those arithmetic functions which 
are locally recursive of finite degree. 

1. IDENTITIES 

Result 1 ([7], Theorem 3.4): — ^ - = nFK „, n > 0. D 

Result 2 ([7], Corollary 3.4.1): £ - ^ = * £ F*t „_y. D 
dtt 

Result3 ([71 Corollary 3.4.2): E ^ ' / ^ E ' y ^ . " - / = * f w D 
y=l Olj j=Q 

Result 4 ([7], Corollary 2.1.3 and Theorem 3.2): If the F-polynomials and G-polynomials are 
regarded as functions of the zeros of the defining monic polynomial Py(x) of y, then 

(a) F4fJI(t(X)) = Z ^ - ^ , w h e r e 5 : i 7 = / i . 
(h) GM(t(X)) = A-1 + - + ^ , 

where t = (tu...,tk) and X = (Al,...,Ak). D 
n 

Theorem 1: nFk „+1 = £ GK rFk 
r=l 

First we prove 
J f c - 1 

Lemma LI: Gk0 = k, G M = F M + 1 + £y7y + 1^f l^y, n>\. 
7=1 

Proof of Lemma 1.1: By definition, we can write 
k 

Gk,n=lLtjGk,n-j = Z 0 
7=1 7=1 

J f c - 1 

X UMFkt n-j-i + Fk, n-j+l 

k J f c - 1 k 

, = i /=i 7=1 
Ar—1 /̂  fc ^ 

and again by definition, = Fkt n+l + £ fy+i X ^ («-/)-y 
M \j=l J 
k-l 

= Fk,n+l + JlitMFk,n-i- D 
/ = 1 
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Proof of Theorem 1: Again, we proceed by induction noting that the result holds when 
n = l. We need to show that (n + l)Fkn+2 = E?iiG^ri^„_r4.2. With the understanding that 
Fk m - 0 when m < 0, we have 

n+l n k 

2-f Gjct r
Fk, n-r+2 - 2-» ^k, r 2-» *JFk, w-r-y+2 + ^ i t , «+l 

r=l r=l ;=1 
k n 

= 2 ^ f /2-r ^k, rFk, n-r-j+2 + Q t , »+l 
y=l r=l 
it it-1 k 

= 2-f ( T V "+W + 2-. 2-( ti/i+Vk, n-j-i 
y=i /=i y=i 

it-1 f it "\ 
~ Fk, n+l + 2-» '*/+l 2^ *rV ("-0-; 

,=1 V/=1 

= Z (/(" - J + ^ -7+2 + G*, «+i 
it i t - i 

so by Lemma 1.1 = £ / , (*- . / ' + 1)̂ *, „-/+2 + X ^ V A «-/+i+ F*. »+2 
/=! y=i 

i t - i 

k 

y=i 

The following two theorems give an effective rewriting process for writing products of PSP's 
in terms of CSP's and vice versa, that is, they will do so once it is explained how to write the 
PSP's and the CSP's in terms of the F- and G-polynomials. We shall state the theorems first. 

Theorem 2: 
Fk,„+, = I ±Gkih...Gk,, zdj = n/;(0)v(/;)! 

dtedZdi 

where d = {dx,...,ds} is the set of partitions of n, v(/.)= number of times /• occurs in dt = 

Proof: Noting that the F-polynomials, when regarded as functions of the roots of the 
defining polynomial Pr(x) are just the complete symmetric polynomials; the G-polynomials are 
the power symmetric polynomials (Result 4), each of which is a basis for the space of symmetric 
polynomials. In particular, each polynomial F^r can be written uniquely as a polynomial in the G-
polynomials. So if the theorem is correct, it is just a statement of this representation. Now, 
Fk,n+i regarded as a polynomial in the roots Ah...yAk,i§ complete symmetric of degree n; hence, 
each monomial summand is obtained as a partition of n; so in the language of Polya's Counting 
Theorem [9], we let the figure inventory consist of Xx H h Xk and then the cycle index is given 
by (l/zdi)GkJr..GkJsj> where Gk%r = (A\ + -+Ar*). Since/j+ •••+/„ =" , ( l / ^ X ^ - . - . G ^ is 
just a monomial of total degree n and so the sum is, indeed, Fktn+l. Here, of course, zd. = # con-
jugates of the element in Sn whose cycle structure is given by dt. D 
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Theorem 3: 

using the notation of Theorem 2, and where l(dt) = length of 4 . • 

The expressions in Theorems 2 and 3 are inverses of one another, which can be shown by 
direct computation, providing a proof of Theorem 3. Now, to get back and forth between the 
two sequences of polynomials, we identify the symbols /. which appear in Gkn and Fkt„+l with 
the elementary symmetric polynomials in the Ah..., Xk as follows: /; = {-\)i+laKj, where akJ -
ak,j(^i>-->^k)= thej* symmetric polynomial in the roots of the polynomial P p(x;t). This 
identification is the basis of the proof of Lemma 4 in [7]. The substitution of the cr's for the fs 
yields the horizontal maps in the diagram in the introduction. The left-hand vertical arrows are 
just the maps implied by Theorems 1 and 2, Theorem 1 going downhill, Theorem 2 going uphill. 
For example, A2

l + AlA2+J^2 "ls" 

dx = [2], d2=[l,ll 

2. PARTIAL DIFFERENTIAL EQUATIONS 

Define a differential operator by A,™ - Ai ~h^\2 "h^hi ~ WA> m ~ \ 2, and, more gener-
ally, Lkm - Dn-T%itjDj2 -mD2. The following theorem states that the polynomials Gnk and 
F„ k are solutions of second-order partial differential equations, with the exceptions of the cases 
for£ = l. 
Theorem 4: (a) LkAGkt„ = 09 k>l, 

(h) 4.2^M = °> k>l-
Proof: We proceed by induction. 

Lemma: (a) L2tiG2f„ = 09 

(b) A,2A,„ = 0. 

(These identities were proved in [5]; however, we shall give a proof here that is self-contained 
using the methods of this paper.) Assuming the result for 1 <r <n + \9 we can write G2)W+1 = 
¥^2,w + ^2 ,w-i ,andthus 

A, \(G2, «+l) = A, \{hG2, n + ̂ 2G2, »-l) 
= 'iA,i(G2, J + ̂ A , i ( ( W + 2AG2,, -hD2GXn -hDfi^ -IhDfi^-G^ 
= 2 1 ^ ^ ( 2 1 1 - 1 ) ^ ^ -2{n-\)t2Fn_2 -F2tn-t2F2^_2 

= (2n-l)F2,n-(2n-l)F2^ = Q, 

equalities which follow from the induction hypothesis, definition of the F- and G- polynomials, 
and Result 1 and Lemma 1.1. D 
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The proof of part (b) follows from (a) and Result 1 as follows. 

Ll,2iFXn) = (Al " '1A2 - *zA» - 2A)^2,„ 
= ( l / /1XA1 - '1A2 - '2A12 - 2A)AG 2 , „ 
= \in AA, A.„+(A, - A2)G2,„ = 0, 

using part (a). • 

To complete the proof of the theorem, we assume that the result of the theorem holds for all 
Gs n for which 1 < s < k -1, and note that Gk>n = Gk_ln for 1 < n < fc. Assume the result for GktS 

for l<s<n, and consider LklGkn+l = LGkn+l, n>k. A straightforward, but rather tedious, 
computation, as in the proof of the lemma, using the inductive definition of Gk>w+1, which takes 
hold for this range of w's, and again using Result 1 and Lemma 1.1, and Theorems 2 and 3, we 
complete the induction. Part (b) now follows by a similar argument. • 

3. CONCLUDING REMARKS 

Theorem 5: Given the recursion uJ+l = axUj + • • • +akUj_k with u0 = 0,u{ = 1, then 

uJ+i = FkJ+l(a). 

Proof: The theorem follows by induction and the definition. D 

Notice that this result can be applied to any linear recursion formula, for if the coefficient of 
Uj+l is any nonzero (complex) number, we can divide through by it and apply the theorem. 

We define a sequence to be locally linearly recursive of degree fc if at each prime/? the prime 
powers of the sequence are given by a linear recursive relation involving k independent unknowns, 
the same k for each prime/?. 

Corollary 5.1: A sequence is locally linearly recursive of degree k if and only if when regarded as 
an arithmetic function, it belongs to the positive semigroup of the group of rational multiplicative 
functions. • 

We define a positive rational multiplicative sequence to be uniform if at each prime it is deter-
mined by the same polynomial, Prp(x) - Prp>(x) for all primes p and /?'. It is clear that the 
uniform sequences form a sub-semigroup of the semigroup of positive rational functions. It is 
also clear from the above corollary that 

Corollary 5.2: A sequence is linearly recursive of degree k if and only if it is, as an arithmetic 
function, uniform. • 

Here, linear recursive of degree k has the obvious meaning; the same relation holds for all 
primes. 
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N E W E L E M E N T A R Y P R O B L E M S AND S O L U T I O N S E D I T O R S 
AND SUBMISSION O F P R O B L E M S AND S O L U T I O N S 

Starting May 1, 2000, all new problem proposals and corresponding solutions 
must be submitted to the Problems Editor: 

Dr. Russ Euler 
Department of Mathematics and Statistics 
Northwest Missouri State University 
800 University Drive 
Maryville, MO 64468 

Starting May 1, 2000, all solutions to others1 proposals must be submitted to the 
Solutions Editor: 

Dr. Jawad Sadek 
Department of Mathematics and Statistics 
Northwest Missouri State University 
800 University Drive 
Maryville, MO 64468 

Guidelines for submission of problems and solutions are listed at the beginning of 
the Elementary Problems and Solutions section of each issue of The Fibonacci 
Quarterly. 
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