CONDITIONS FOR THE EXISTENCE OF GENERALIZED FIBONACCI PRIMITIVE ROOTS

Hua-Chieh Li

Department of Mathematics, National Tsing Hua University Hsinchu, Taiwan 30043, Republic of China (Submitted August 1998-Final Revision October 1998)

1. INTRODUCTION

Consider sequences of integers $\{U_n\}_{n=0}^{\infty}$ defined by $U_n = aU_{n-1} + bU_{n-2}$ for all integers $n \ge 2$, where $U_0 = 0$, $U_1 = 1$, a and b are given integers. We call these sequences generalized Fibonacci sequences with parameters a and b. In the case where a = b = 1, the sequence $\{U_n\}_{n=0}^{\infty}$ is called the Fibonacci sequence, and we denote its terms by F_0, F_1, \dots

The polynomial $f(x) = x^2 - ax - b$ with discriminant $D = a^2 + 4b$ is called the characteristic polynomial of the sequence $\{U_n\}_{n=0}^{\infty}$. Suppose that f(x) = 0 has two distinct solutions α and β . Then we can express U_n in the *Binet form*,

$$U_n=\frac{\alpha^n-\beta^n}{\alpha-\beta}.$$

This and its relative $V_n = \alpha^n + \beta^n$ are known as *Lucas functions* as well and have a rich history. Please see the pioneering work of the late D. Lehmer [2] for more detail. Let p be a prime number. If x = g satisfies the congruence $f(x) = x^2 - ax - b \equiv 0 \pmod{p}$, then by setting $W_0 = 1$, $W_1 = g$, and $W_n = aW_{n-1} + bW_{n-2}$, we have that $W_n \equiv g^n \pmod{p}$. We have given particular attention to those cases having the longest possible cycles, i.e., the number g being a primitive root modulo p; these are the most important cases in practical applications of the theory. We call g a generalized Fibonacci primitive root modulo p with parameters a and b if g is a root of $x^2 - ax - b \equiv 0 \pmod{p}$ and g is a primitive root modulo p. In particular, in the case a = b = 1, we call g a Fibonacci primitive root.

Fibonacci primitive roots modulo p have an extensive literature (see, e.g., [1], [3], [4], [7], [8], and [9]). For generalized Fibonacci primitive roots modulo p, R. A. Mollin [5] dealt with the case a = 1 and B. M. Phong [6] dealt with the case $b = \pm 1$. Mollin's work was the first to introduce the notion of a generalized Fibonacci primitive root based upon the pioneering work of the last D. Shanks [8]. In this paper we consider even more general cases, i.e., with arbitrary a and b. Our main theorem generalizes the results of Mollin and Phong.

2. NOTATIONS AND PRELIMINARY RESULTS

Let $\{U_n\}_{n=0}^{\infty}$ be the generalized Fibonacci sequence with parameters a and b. In this section we always suppose that b is relatively prime to m and suppose that $x^2 - ax - b \equiv 0 \pmod{m}$ has two distinct solutions modulo m.

For convenience, we introduce some notations:

(1) Let α be an integer relatively prime to m. Denote $\operatorname{ord}_m(\alpha)$ the least positive integer x such that $\alpha^x \equiv 1 \pmod{m}$.

JUNE-JULY

(2) k(m) is called the period of the sequence $\{U_n\}_{n=0}^{\infty}$ modulo *m* if it is the smallest positive integer for which $U_{k(m)} \equiv 0 \pmod{m}$ and $U_{k(m)+1} \equiv 1 \pmod{m}$.

(3) [x, y] is the least common multiple of x and y.

(4) For an odd prime p, (β/p) denotes the Legendre symbol; i.e., $(\beta/p) = 1$ if and only if $y^2 \equiv \beta \pmod{p}$ is solvable.

We now state some elementary results that will be useful later.

Suppose that α and β are distinct solutions to $x^2 - \alpha x - b \equiv 0 \pmod{m}$. Let $l = [\operatorname{ord}_m(\alpha), \operatorname{ord}_m(\beta)]$. Since $\alpha\beta \equiv -b \pmod{m}$, we have that $1 \equiv (\alpha\beta)^l \equiv (-b)^l \pmod{m}$. This implies that

$$\operatorname{ord}_{m}(-b) | [\operatorname{ord}_{m}(\alpha), \operatorname{ord}_{m}(\beta)]$$

By a similar argument, we have that

$$\operatorname{ord}_{m}(\alpha) | [\operatorname{ord}_{m}(-b), \operatorname{ord}_{m}(\beta)]$$

and

 $\operatorname{ord}_{m}(\beta) | [\operatorname{ord}_{m}(\alpha), \operatorname{ord}_{m}(-b)] |$

In particular, if $\operatorname{ord}_m(-b)|\operatorname{ord}_m(\alpha)$, then $\operatorname{ord}_m(\beta)|\operatorname{ord}_m(\alpha)$ and vice versa. We have the following lemma.

Lemma 2.1: Let α and β be the two distinct solutions to $x^2 - \alpha x - b \equiv 0 \pmod{m}$. Suppose that $\operatorname{ord}_m(-b) | \operatorname{ord}_m(\alpha)$. Then we have $\operatorname{ord}_m(\beta) | \operatorname{ord}_m(\alpha)$. Furthermore, $\operatorname{ord}_m(\beta) = \operatorname{ord}_m(\alpha)$ if and only if $\operatorname{ord}_m(-b) | \operatorname{ord}_m(\beta)$.

Lemma 2.2: Let α and β be the two distinct solutions to $x^2 - \alpha x - b \equiv 0 \pmod{m}$ and let k(m) be the period of the generalized Fibonacci sequence with parameters α and b modulo m. Then

$$k(m) = [\operatorname{ord}_m(\alpha), \operatorname{ord}_m(\beta)]$$

Proof: Since α and β are the two distinct solutions to $x^2 - \alpha x - b \equiv 0 \pmod{m}$,

$$\alpha^n \equiv a\alpha^{n-1} + b\alpha^{n-2} \pmod{m}$$
 and $\beta^n \equiv a\beta^{n-1} + b\beta^{n-2} \pmod{m}$.

Consider the sequence $\{A_n\}_{n=0}^{\infty}$, where $A_n - b\alpha U_{n-2} + \alpha^2 U_{n-1}$. Since $\{A_n\}_{n=0}^{\infty}$ and $\{\alpha^n\}_{n=0}^{\infty}$ both satisfy the same recurrence relation modulo *m* and $A_2 \equiv \alpha^2$, $A_3 \equiv \alpha^3 \pmod{m}$. Therefore, we have that $A_n \equiv \alpha^n \pmod{m}$ for all $n \ge 2$. Thus, $\alpha^n \equiv b\alpha U_{n-2} + \alpha^2 U_{n-1} \pmod{m}$ and, similarly, we have $\beta^n \equiv b\beta U_{n-2} + \beta^2 U_{n-1} \pmod{m}$. This tells us that if k(m) is the period of the generalized Fibonacci sequence modulo *m* then

$$\alpha^{k(m)+2} \equiv b \alpha U_{k(m)} + \alpha^2 U_{k(m)+1} \pmod{m}.$$

Hence, $\operatorname{ord}_{m}(\alpha) | k(m)$ and $\operatorname{ord}_{m}(\beta) | k(m)$. On the other hand, consider the Binet form

$$U_n \equiv \frac{\alpha^n - \beta^n}{\alpha - \beta} \pmod{m}.$$

Let $l = [\operatorname{ord}_m(\alpha), \operatorname{ord}_m(\beta)]$. $\alpha^l - \beta^l \equiv 0 \pmod{m}$ and $\alpha^{l+1} - \beta^{l+1} \equiv \alpha - \beta \pmod{m}$. This implies that $U_l \equiv 0 \pmod{m}$ and $U_{l+1} \equiv 1 \pmod{m}$. Thus, $k(m) |[\operatorname{ord}_m(\alpha), \operatorname{ord}_m(\beta)]$. \Box

2000]

3. GENERALIZED FIBONACCI PRIMITIVE ROOTS MODULO p

The conditions for the existence of Fibonacci primitive roots modulo p and their properties were studied by several authors. In this section we will generalize their results to generalized Fibonacci primitive roots. Again $\{U_n\}_{n=0}^{\infty}$ is the generalized Fibonacci sequence with parameters a and b. For completeness, we begin with special cases. Since the argument is quite straightforward, we omit the proofs.

Proposition 3.1: Let p be an odd prime and let $\{U_n\}_{n=0}^{\infty}$ be the generalized Fibonacci sequence with parameters a and b.

(1) Suppose that p | b but $p \nmid a$. Then there exists a generalized Fibonacci primitive root for $\{U_n\}_{n=0}^{\infty}$ modulo p if and only if z = p is the least integer greater than 1 such that $U_z \equiv 1 \pmod{p}$. Moreover, in this case, a is the unique generalized Fibonacci primitive root for $\{U_n\}_{n=0}^{\infty}$ modulo p. (2) Suppose that $p \mid a^2 + 4b$. Then there exists a generalized Fibonacci primitive root for $\{U_n\}_{n=0}^{\infty}$ modulo p if and only if k(p) = p(p-1). Moreover, in this case, $\alpha \equiv a/2 \pmod{p}$ is the unique generalized Fibonacci primitive root for $\{U_n\}_{n=0}^{\infty}$ modulo p.

For the remainder of this section we assume that p is an odd prime with (D/p) = 1, where $D = a^2 + 4b$ and $p \nmid b$.

In the Fibonacci case, $\{F_n\}_{n=0}^{\infty}$ possesses a Fibonacci primitive root modulo p if and only if the period of $\{F_n\}_{n=0}^{\infty}$ modulo p equals p-1 (for results on Fibonacci primitive roots, we refer to [6]). This is not always true for generalized Fibonacci primitive roots. We have the following example.

Example: Let a = 1, b = 2, and p = 7. $\{U_n\}_{n=0}^{\infty} \equiv \{0, 1, 1, 3, 5, 4, 0, 1, ...\} \pmod{7}$. The period of $\{U_n\}_{n=0}^{\infty} \mod p$ is p-1. $x \equiv 2$ and 6 (mod 7) are distinct roots to $x^2 - x - 2 \equiv 0 \pmod{7}$ but neither 2 nor 6 is a primitive root modulo 7. Hence, there is no generalized Fibonacci primitive root modulo 7 for $\{U_n\}_{n=0}^{\infty}$ with parameters 1 and 2.

However, by Lemma 2.2, there is no generalized Fibonacci primitive root modulo p if $k(p) \neq p-1$.

Lemma 3.2: Let α and β be two distinct roots of $x^2 - ax - b \equiv 0 \pmod{p}$. Then there exists a generalized Fibonacci primitive root modulo p for $\{U_n\}_{n=0}^{\infty}$ with parameters a and b if and only if k(p) = p - 1 and either $\operatorname{ord}_p(-b) |\operatorname{ord}_p(\alpha)$ or $\operatorname{ord}_p(-b) |\operatorname{ord}_p(\beta)$.

Proof: Suppose that α is a primitive root modulo p. Then $\operatorname{ord}_p(-b) |\operatorname{ord}_p(\alpha)$ by Euler's theorem, and k(p) = p-1 by Lemma 2.2. Conversely, suppose that $\operatorname{ord}_p(-b) |\operatorname{ord}_p(\alpha)$. Then $\operatorname{ord}_p(\beta) |\operatorname{ord}_p(\alpha)$ by Lemma 2.1, and hence $k(p) = \operatorname{ord}_p(\alpha)$ by Lemma 2.2. By the assumption, k(p) = p-1, and our proof is complete. \Box

Theorem 3.3: Suppose that $\operatorname{ord}_p(-b) = q$, where q is a prime power of 1. Then there exists a generalized Fibonacci root modulo p for $\{U_n\}_{n=0}^{\infty}$ with parameters a and b if and only if k(p) = p - 1.

Proof: Let α and β be two distinct roots of $x^2 - \alpha x - b \equiv 0 \pmod{p}$. Since $q = \operatorname{ord}_p(-b) |$ $[\operatorname{ord}_p(\alpha), \operatorname{ord}_p(\beta)]$ and q is a prime power, this implies $\operatorname{ord}_p(-b) | \operatorname{ord}_p(\alpha)$ or $\operatorname{ord}_p(-b) | \operatorname{ord}_p(\beta)$. By Lemma 3.2, our claim follows. \Box

JUNE-JULY

Example: Consider the Fibonacci sequence. Since b = 1, $\operatorname{ord}_p(-b) = 2$. We have that there exists a Fibonacci primitive root modulo p if and only if the period of the Fibonacci sequence modulo p is p-1.

Naturally, we ask if anything more can be said about the existence of generalized Fibonacci primitive roots modulo p with parameters a and b, for $\operatorname{ord}_p(-b)$ not a prime power. The following example shows that nothing more can be said in this case.

Example:

(1) We have that a = 1, b = 2, and p = 7. $\operatorname{ord}_7(-2) = 2 \cdot 3$, and there is no generalized Fibonacci primitive root modulo 7 with parameters 1 and 2.

(2) Let a = -1, b = 2, and p = 7. Then $\{U_n\}_{n=0}^{\infty} \equiv \{0, 1, 6, 3, 2, 4, 0, 1, ...\} \pmod{7}$. The period of $\{U_n\}_{n=0}^{\infty}$ modulo p is p-1, and $x \equiv 5$ and 1 (mod 7) are distinct roots of $x^2 - x - 2 \equiv 0 \pmod{7}$. 5 is a primitive root modulo 7. Hence, there is a general-ized Fibonacci primitive root modulo 7 for $\{U_n\}_{n=0}^{\infty}$ with parameters -1 and 2.

Suppose that $\operatorname{ord}_p(-b) = q$. Let α and β be two distinct roots of $x^2 - \alpha x - b \equiv 0 \pmod{p}$. Let $\operatorname{ord}_p(\alpha) = n_1$ and let $\operatorname{ord}_p(\beta) = n_2$. Suppose that $q \mid n_1$. Then, by Lemma 2.1, we have that $n_2 \mid n_1$. Moreover, since $(\alpha)^{qn_2} \equiv (\alpha\beta)^{qn_2} \equiv (-b)^{qn_2} \equiv 1 \pmod{p}$, we have that $n_2 \mid n_1$ and $n_1 \mid qn_2$.

Theorem 3.4: Suppose that $\operatorname{ord}_p(-b) = q$ (hence q | p - 1), where q is a prime power. Suppose also that the period of the generalized Fibonacci sequence with parameters a and b modulo p is p-1. Then we have the following:

(1) Suppose that $q^2 | p-1$. Then there exist two distinct general Fibonacci primitive roots modulo p with parameters a and b.

(2) Suppose that q/(p-1)/2. Then there exists exactly one generalized Fibonacci primitive root modulo p with parameters a and b.

Proof:

(1) Let α and β be two distinct roots of $x^2 - \alpha x - b \equiv 0 \pmod{p}$. By Theorem 3.3, the assumption implies that either α or β is a primitive root modulo p; let us say that α is a primitive root. By Lemma 2.1, $q | \operatorname{ord}_p(\beta)$ if and only if β is a primitive root modulo p. Suppose that $q | \operatorname{ord}_p(\beta)$. By the assumption $q^2 | p - 1$, it follows that $p - 1/q \operatorname{ord}_p(\beta)$. This contradicts the argument above which says that $\operatorname{ord}_p(\alpha) = p - 1 | q \operatorname{ord}_p(\beta)$. Therefore, β is also a primitive root modulo p.

(2) ord_p(-b)/(p-1)/2 is equivalent to (-b/p) = -1. Since $\alpha\beta = -b$, it is impossible that $(\alpha/p) = -1$ and $(\beta/p) = -1$. Our claim follows. \Box

Remark: Theorems 3.3 and 3.4 generalize Phong ([6], Theorem 1). In his case, b = 1, and hence $\operatorname{ord}_p(-b) = 2$. Therefore, suppose k(p) = p-1. $p \equiv 1 \pmod{4}$ (i.e., $4 \mid p-1$) implies the existence of two distinct generalized Fibonacci primitive roots modulo p, and $p \equiv -1 \pmod{4}$ (i.e., $2 \mid (p-1)/2$) implies the existence of exactly one generalized Fibonacci primitive root modulo p.

Suppose that $q^2 | p-1$. There may be two or only one generalized Fibonacci primitive root modulo p. Our next example illustrates these cases.

2000]

Example:

(1) Consider a = 1, b = 2, and p = 11. $\operatorname{ord}_p(-b) = 5$ and $5^2 \nmid p - 1$. $\{U_n\}_{n=0}^{\infty} \equiv \{0, 1, 1, 3, 5, 0, 10, 10, 8, 6, 0, 1, ...\}$ (mod 11). The period $\{U_n\}_{n=0}^{\infty}$ modulo p is p-1, and $x \equiv 2$ and -1 (mod 11) are distinct roots of $x^2 - x - 2 \equiv 0 \pmod{11}$. 2 is a primitive root modulo 11 and -1 is not a primitive root modulo 11. Hence, there is a generalized Fibonacci primitive root modulo 11 for $\{U_n\}_{n=0}^{\infty}$ with parameters 1 and 2.

(2) Consider a = -1, b = 6, and p = 11. $\operatorname{ord}_p(-b) = 5$ and $5^2 \nmid p - 1$. $\{U_n\}_{n=0}^{\infty} \equiv \{0, 1, 10, 7, 9, 0, 10, 1, 4, 2, 0, 1, ...\}$ (mod 11). The period $\{U_n\}_{n=0}^{\infty}$ modulo p is p-1, and $x \equiv 2$ and 8 (mod 7) are distinct roots of $x^2 + x - 6 \equiv 0 \pmod{11}$. Both 2 and 8 are primitive roots modulo 11. Hence, there are two generalized Fibonacci primitive roots modulo 11 for $\{U_n\}_{n=0}^{\infty}$ with parameters -1 and 6.

4. SOME INTERESTING EXAMPLES

In [8], D. Shanks asked whether there exist infinitely many primes possessing Fibonacci primitive roots. For generalized Fibonacci primitive roots similar questions can be asked. In [4], Mays proved that if p = 60k - 1 and q = 30k - 1 are both prime, then there exists a Fibonacci primitive root modulo p. Phong (see [6], Corollary 3) generalized Mays' result for a generalized Fibonacci sequence with parameters a and b = 1, which says that if a is an integer and both q and p = 2q + 1 are primes with (D/p) = 1, where $D = a^2 + 4$, then there exists exactly one generalized Fibonacci primitive root modulo p with parameters a and b = 1. Mollin (see [5], Theorem 1), following Mays' method, proved the following: Suppose that p > b > 2 and (D/p) = 1, where D = 4b + 1 and p = 2q + 1 is a prime with q an odd prime. Furthermore, suppose that b has order q modulo p. Then there exists a generalized Fibonacci primitive root modulo p with parameters a = 1 and b. Our next theorem generalizes Phong and Mollin's results.

Theorem 4.1: Suppose that p = 2q+1 is a prime with q an odd prime and suppose that (D/p) = 1, where $D = a^2 + 4b$. Furthermore, suppose that $1 + a - b \neq 0 \pmod{p}$ and $\operatorname{ord}_p(b) = 1$ or q. Then there exists exactly one generalized Fibonacci primitive root modulo p with parameters a and b.

Proof: Suppose that $\operatorname{ord}_p(-b) = q$. Then $b^q \equiv -1 \pmod{p}$. This contradicts our assumption that $\operatorname{ord}_p(b) \equiv 1$ or q. Our assumption also says that $\operatorname{ord}_p(-b) \neq 1$, because otherwise $\operatorname{ord}_p(b) = 2$. Therefore, the possible order for $-b \mod p$ is 2 or 2q. Let α and β be two distinct roots of $x^2 - ax - b \equiv 0 \pmod{p}$. Since $\operatorname{ord}_p(-b) |[\operatorname{ord}_p(\alpha), \operatorname{ord}_p(\beta)]$, this implies that either $\operatorname{ord}_p(\alpha)$ is even or $\operatorname{ord}_p(\beta)$ is even; say that $\operatorname{ord}_p(\alpha)$ is even. Now, since -1 is not a root of $x^2 - ax - b \equiv 0 \pmod{p}$, by the assumption, it follows that $\operatorname{ord}_p(\alpha) = 2q = p - 1$, and by the same reasoning as in Theorem 3.4(2), there exists exactly one generalized Fibonacci primitive root modulo p.

Remark: Suppose that p = 2q + 1 is a prime with q an odd prime and suppose that (D/p) = 1, where $D = a^2 + 4b$. Furthermore, suppose that $1 + a - b \neq 0 \pmod{p}$ and $b \neq -1 \pmod{p}$. Let α and β be two roots of $x^2 - ax - b \equiv 0 \pmod{p}$. Then Theorem 4.1 says that among α , β , and $-\alpha\beta$ there exists one primitive root modulo p. Unfortunately, we do not know whether or not there exist infinitely many such p.

JUNE-JULY

In [10], Wall asked whether, for a Fibonacci sequence, $k(p) = k(p^2)$ is always impossible; up to now, this is still an open question. According to Williams [11], $k(p) \neq k(p^2)$ for every odd prime p less than 10⁹. Our next proposition states that, for a generalized Fibonacci sequence, it is possible that $k(p) = k(p^2)$.

Proposition 4.2: For any odd prime p, there exists a generalized Fibonacci sequence with parameters a and b such that $k(p) = k(p^2)$.

Proof: For any odd prime p, choose $\alpha \neq 0 \pmod{p}$ and $\beta \neq 0 \pmod{p}$ such that $\alpha \neq \beta \pmod{p}$. By Hensel's lemma, there exist $\alpha' \equiv \alpha \pmod{p}$ and $\beta' \equiv \beta \pmod{p}$ such that $\operatorname{ord}_{p^2}(\alpha') = \operatorname{ord}_p(\alpha)$ and $\operatorname{ord}_{p^2}(\beta') = \operatorname{ord}_p(\beta)$. Choose $a = \alpha' + \beta'$ and $b = -\alpha'\beta'$. Consider the generalized Fibonacci sequence $\{U_n\}_{n=0}^{\infty}$ with parameters α and b. Then, by Lemma 2.2,

$$k(p) = [\operatorname{ord}_p(\alpha'), \operatorname{ord}_p(\beta')] = [\operatorname{ord}_{p^2}(\alpha'), \operatorname{ord}_{p^2}(\beta')] = k(p^2). \quad \Box$$

Example: For p = 5, consider $\alpha = 2$ and $\beta = 1$. We have that $\operatorname{ord}_{25}(7) = \operatorname{ord}_{5}(2) = 4$ and $\operatorname{ord}_{25}(1) = \operatorname{ord}_{5}(1) = 1$. Let a = 7 + 1 = 8 and b = -7. Then $\{U_n\}_{n=0}^{\infty} \equiv \{0, 1, 3, 2, 0, 1, ...\} \pmod{5}$ and $\{U_n\}_{n=0}^{\infty} \equiv \{0, 1, 8, 7, 0, 1, ...\} \pmod{25}$.

ACKNOWLEDGMENT

The author would like to express his appreciation to the anonymous referee for making valuable suggestions regarding the presentation of this paper.

REFERENCES

- 1. P. Kiss & B. M. Phong. "On the Connection between the Rank of Apparition of a Prime p in the Fibonacci Sequence and the Fibonacci Primitive Roots." *The Fibonacci Quarterly* **15.4** (1977):347-49.
- 2. D. Lehmer. "An Extended Theory of Lucas' Functions." Ann. of Math. 31 (1930):419-48.
- M. J. DeLeon. "Fibonacci Primitive Roots and Period of the Fibonacci Numbers Modulo p." The Fibonacci Quarterly 15.4 (1977):353-55.
- 4. M. E. Mays. "A Note on Fibonacci Primitive Roots." *The Fibonacci Quarterly* **20.2** (1982): 111.
- 5. R. A. Mollin. "Generalized Fibonacci Primitive Roots and Class Numbers of Real Quadratic Fields." *The Fibonacci Quarterly* 24.1 (1986):46-53.
- 6. B. M. Phong. "Lucas Primitive Roots." The Fibonacci Quarterly 29.1 (1991):66-71.
- 7. D. Shanks. Solved and Unsolved Problems in Number Theory. 2nd ed. New York: Chelsea, 1978.
- 8. D. Shanks. "Fibonacci Primitive Roots." The Fibonacci Quarterly 10.2 (1972):162-68.
- 9. D. Shanks & L. Taylor. "An Observation on Fibonacci Primitive Roots." The Fibonacci Quarterly 11.2 (1973):159-60.
- 10. D. D. Wall. "Fibonacci Series Modulo m." Amer. Math. Monthly 67 (1960):525-32.
- 11. H. C. Williams. "A Note on the Fibonacci Quotient $F_{p-\varepsilon}/p$." Canad. Math. Bull. 25 (1982): 366-70.

AMS Classification Numbers: 11B39, 11A07, 11B50

2000]