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1. INTRODUCTION 

Fix a prime/?. We say that a set S forms a complete residue system modulop if, for all i such 
that 0 < i < p - 1 , there exists s GS such that s = J (mod /?). We say that a set S forms a reduced 
residue system modulo p if, for all / such that 1 < i < p -1, there exists s GS such that s = i (mod 
p). In [9], Shah showed that, ifp is a prime and p = 1,9 (mod 10), then the Fibonacci sequence 
does not form a complete residue system modulo p. For p > 7, Bruckner [2] proved this result 
for the remaining case. Thus, ifp is a prime and p > 7, then the Fibonacci sequence {Fn} has an 
incomplete system of residues modulo/?. Somer [11] generalized these results by considering all 
linear recurrence sequences with parameters (a, 1), i.e., linear recurrences of the form 

Un=aUn-l+Un-2-

He proved that, if p > 7 and p # 1 or 9 (mod 20), then all recurrence sequences with parameters 
(a, 1), for which /? |a2+4, have an incomplete system of residues modulo/?. For the remaining 
primes, this result has been proved by Schinzel in [8]. 

In this paper we obtain a unified theory of the structure of recurrence sequences by examin-
ing the ratios of recurrence sequences. We can apply our method to prove that, if p > 7, then all 
recurrence sequences with parameters (a, 1), for which /? |a2+4, have an incomplete system of 
residues modulo /?. To explain our idea more clearly, we include our proof here. However, our 
idea is totally different from Schinzel's. Finally, we apply our method to determine for which 
primes /? a second-order recurrence sequence forms a reduced residue system modulo /?. Our 
main result is that, if p > 17 and a2 + 4 is not a quadratic residue modulo /?, then all the recur-
rence sequences with parameters (a, 1) do not form a reduced residue system modulo/?. 

2. PRELIMINARIES AND CONVENTIONAL NOTATIONS 

Given a, b e Z, we consider all the second-order linear recurrence sequences {un} in Z satis-
fying un - aun_1-^bun_2. However, in this paper we exclude the case un = 0 for all n e Z. We 
also exclude the case in which b = 0 (mod /?) since, in this case, {un} is not purely periodic 
modulo/?. We call the sequence {un} a second-order recurrence sequence with parameters (a, b). 
In particu-lar, the sequence with uQ = 0 and ux -1 is called the generalized Fibonacci sequence 
and we denote it by {/„}. The sequence with uQ = 2 and ux = a is called the generalized Lucas 
sequence and we denote it by {/„}. 

Definition: Let {un} be a second-order linear recurrence sequence. Consider rn - (un, un+l) as an 
element in the projective space P!(Z//?Z). We call rn the /i* ratio of {un} modulo/? and we call 
the sequence {rj the ratio sequence of {un} modulo/?. 
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We say that two sequences {un} and {ul
n} which both satisfy the same recurrence relation are 

equivalent modulo p if there is c # 0 (modp) and an integer s such that un+s = cu\ (modp) for all 
n. Let {rj and {/*„'} be the ratio sequences of {un} and {t^} modulo p, respectively. Then {uj 
and {u'n} are equivalent modulo p if and only if there exist integers s and / such that rs = /•/ in 
^ (Z /pZ) . 

Since {ww} is periodic modulo p, the ratio sequence {rn} of {ww} modulo p is also periodic. 
The least positive integer z such that rQ = rz in PX(Z /pZ) is called the rank of {un} modulo p. We 
remark that the rank of apparition of {fn} modulo p (i.e., the smallest positive integer z such that 
fz = 0 (modp)), by our definition, equals the rank of {/„} modulo p. 

For convenience, we introduce some notation: 
(1) (flip) denotes the Legendre symbol; i.e., for p\fl, (flip) = 1 if y2 = fl (modp) is solv-

able and {flip) = -1 if j 2 = /? (modp) is not solvable. 
(2) For an integer m # 0 (modp), we denote m~l to be the solution ofmx = l (modp). 
(3) We denote the least positive integer t such that d* s 1 (modp) by oidp(d). 

Given a sequence {un}, there exists an r e Z such that {un} modulo p is equivalent to the 
sequence {ufi modulo p with «J = 1 and u{ = r. Therefore, without loss of generality, we only 
consider the sequence with uQ = 1 and ux = r. 

The following lemmas are not new. However, for some of the lemmas, we include proofs 
because these ideas will be used for the proof of our main theorems. 

Lemma 2.1: Let {un} be the recurrence sequence with parameters (a, b) and u0 = l, ux-r. Then 
the rank of {uj modulo p equals the rank of {fj modulo pi£r2-ar-h£0 (mod p). 

Proof: Suppose the the rank of {uj modulo p is t and the rank of {/„} modulo p is z. Since 
% = Wn-1 +rfn> w e h a v e t h a t wz+i s rfz+i = mz ( m o d P) because fz = 0 (mod p) and bfz_x =fz+l 

(modp). This says that (uz,uz+l) = (%ut) in Pl(Z IpZ) and hence t\z. On the other hand, we 
have that bft +rfM = r(bft^+fft) (mod p) by the assumption that uM = rut (mod p). Substitut-
ing /r+i = aft+ ¥t-v w e h a v e t h a t (f2 ~ a r ~~b)ft ~ ° ( m o d P)- Therefore, p\r2-ar-b implies 
that ft=0 (modp). This says that z\t. D 

Lemma 12: Let p be an odd prime and let z be the rank of the generalized Fibonacci sequence 
with parameters (a, b) modulo p. Let D = a2 +4b. Then 

(i) z | p + l i f ( D / p ) = - l ? 

(ii) z = p if p\D9 

(Hi) z\p-l if {Dip) = 1. 

Proof: (i) Suppose that (D/p) = - 1 . Then x2 -ax-b = 0 (modp) has no solution. Thus, 
by Lemma 2.1, every recurrence sequence with parameters (a, b) has the same rank modulo p. 
Let t be the number of distinct equivalence classes of recurrence sequences of parameters (a, b) 
modulo p. Further, let {{f^„} 11 < i < 4 be a representative of these equivalence classes and let 
{{rf n} 11 < i < *} be their ratio sequences in P!(Z/pZ), respectively. By definition, we then have 
rUs±ruX in P!(Z/pZ) for all l<s*X<z and, if i*y , {r/fll} and {rJt„} are disjoint. Since, for 
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any r eP!(Z//?Z), (w03n1) = r gives a sequence {uj, we have {ru?...?r1?z}u—Aj{ru? ...,1fZ} = 
P1 (Z I pi). It follows that tz = p + l because the number of elements In P!(Z IpJ) Is p +1. 

(ii) For /? |D, x2 - ax -b = 0 (mod /?) has a double root. By Lemma 2.1, the number of 
ratios that give the same rank as the generalized Fibonacci sequence does is p + l-l = p. Our 
claim follows by a similar argument as in (i) above. 

(Hi) For {Dip) = 1, there exist two distinct solutions to x2 -ax-b = 0 (mod/?). Our claim 
follows by a similar argument as in (i) above. D 
Remark: From the proof above, we have that the number of distinct equivalence classes of recur-
rence sequences with parameters (a, b) modulo p is (p +1) / z (resp. 2 + (p -1) / z\ if (D Ip) = -1 
(resp. (D//?)=!). 

Lemma 2.3: Let z be the rank of the generalized Fibonacci sequence with parameters (a, 6) mod-
ulo p and let D - a2 +4b. Suppose that p is an odd prime such that p\D. Then {-b Ip) - 1 if 
and only if z | p"2 . 

Proof: For the proof, please see Lehmer [5]. • 

Lemma 2.4: Let {/„} be the generalized Fibonacci sequence with parameters (a, 6) and let z be 
the rank and k be the period of {/„} modulo /?, respectively. Let z = 2 V and ordp(-i) = 2^/r, 
where z' and h are odd integers. 
(i) Tfv*ju, then* = 21cm[z,ordp(-£)].' 

fii) If v = ju > 0, then k = lcm[z, ordp(-J)]. 

Proof: For the proof, please see Wyler [13]. • 
In the following, we concentrate on recurrence sequences with parameters (a, 1). 

Lemma 2.5: Let {un} and {u'n} be two recurrence sequences with parameters (a, 1). Then 

Proof: By the recurrence formula, we have that 

Lemma 2.6: Let z be the rank of apparition of the generalized Fibonacci sequence modulo/?. 
(i) fifz_i.l+fi+lfz.i^0(modPy 

r\ f = V**M ( m o d ^ ) i f ^sodd, 
W J**-*-}-fte+t (mod/?) if t is even. 

..... T , . ,u , J"/z/2+r (mod/?) if /is odd, 
fin) If z is even, then fz/2_t si ,1 V -r, • 

[fz/2+t ( m o d P) l f ^ 1S e v e n-
Proof: (i) Since lfz_2 +qfz_x = fz = 0 (mod /?) and fx = 1, / 2 = a by Lemma 2.5, we have 

that f2fz-3 + f-Jz-i = 0 (mod/?). By induction, our claim follows. 
(ii) Since fkz = 0 (mod /?), we have that f^f^-i + fte+\fxz = ° (mod /?). It follows from 

Lemma 2.5 that f^J^i +fte+zfte-i = ° (mod/?). We have that f^_2 = -/^+2 (mod/?) because 
fxz-i = /b+i (mod/?). By induction, our claim follows. 
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(Mi) Substitute i = z 12 in (I). We have fz/2fz,2-i + fzn+ifzn s ° (m»d PY Since fzl2 # 0 
(mod/?), it follows that /z/2_! == -/z /2+1 (mod/?). By induction, our claim follows. D 

Since /z+1 s /Z+L/; (mod /?) and fz = fz+lfQ (mod p), it follows that /w+z = fz+lfn (mod /?) for 
all n. Suppose that {uj is a recurrence sequence with parameters (a, 1). Then, as un = %/n_i + 
f/i/w, we also have i^+z = fz+lun (mod/?) for all w and, hence, un+Az = / ^ ^ (mod/?). 

Lemma 2.7: Let z be the rank of apparition of the generalized Fibonacci sequence modulo p. 
Then 
(i) 4-i4-/ + //4-/+i s 0 (mod/?), 

(Hi ={" / ^ + f ( m o d ^ ) if ' is odd, 
^r-r - h^+t (mod /?) if f is even. 

Proof: (i) Since z is the rank of {/J modulo p, by the argument above it follows that 
(4? 4+i) - 0o> A) ~ (2?«) in P!(Z//?Z). By the recurrence relation, we have that (/z-1, lz) = (-a, 2) 
in Pl(Z/pi). Therefore, we have that /04-i + 44 = ° (mo^ PY BY Lemma 2.5, it follows that 
44-2 +44- i = 0 (mod/?). By induction, our claim follows. 

(if) Since l^_x = -/fc+1 (mod/?), we have that ^xz-i + 4z+i4z = 0 (mod/?). By Lemma 2.5 it 
follows that /fe+idz-2 + 4b+24b-i s 0 (mod/?). Therefore, /^_2 = /^+2 (mod/?). By induction, our 
claim follows. D 

3* COMPLETE RESIDUE SYSTEMS OF SECOND-ORDER 
RECURRENCES MODULO p 

Somer [11] proved that, if/?>7, /?|a2 + 4, and /?#1 or 9 (mod 20), then all recurrence 
sequences with parameters (a, 1) have an incomplete system of residues modulo p. In Theorem 
3.3 we will improve Somer's results to all primes p>l by substantially extending the methods 
used in Somer's paper. As remarked earlier, Schinzel [8] proved this result by a different method. 

We remark that, if ut = 0 (mod/?) for some i, then the recurrence sequence {un} is equivalent 
to {/„} modulo/?. Therefore, we only have to consider the sequence that is equivalent to the gen-
eralized Fibonacci sequence modulo p. Hence, we reduce our problem to considering whether or 
not {fn} forms a complete residue system modulo/?. 

First, we consider the case where pi a2 + 4 and x2 -ax-1 = 0 (mod /?) is solvable. In this 
case, it follows by Lemmas 2.2, 2.3, and 2.4 that the period of {/„} divides p-\. Thus, the 
number of distinct residues of {fj modulo/? is less than/? and we conclude that {/„} does not 
form a complete residue system modulo p. 

Now we consider the case where x2 - ax -1 = 0 (mod /?) is not solvable. 

Lemma 3d: Suppose that x2 - ax -1 = 0 (mod /?) is not solvable. Let z be the rank of apparition 
of the generalized Fibonacci sequence modulo/?. Consider all recurrence sequences with param-
eters (a, 1) modulo p. Fix an integer e with \<e<z. Then, given an integer A, up to the 
equivalence relation, there exists a unique {%} and there exists a unique integer i depending on 
{nj with 1 < i < z such that ut+e = Xut (mod /?). 

Proof: Suppose (ui9 aj+1) = (1, r) in Pl(I/pI). Then we see by induction that (14, u^e) = 
(1, rfe + fe„t) in Pl(I I pi). Since f9 # 0 (mod /?), for 1 < e < z, there exists a unique r modulo p 
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such that rf9 + /e_i = ^ (mod/?). For the ratio (1, r) e Pl(Z/pZ), this gives a unique equivalence 
class of recurrence sequences modulo/?. Let {uj be a representative of such a class. Since there 
is no solution for x2 -ax-1 = 0 (mod p), the rank of {un} modulo p is equal to z. Therefore, 
there exists a unique i with 1 < / < z such that (14, ui+l) = (1, r) in P*(Z I pi). D 

Example: We are particularly interested in the case A = ±l (mod p). Consider the recurrence 
sequences satisfying u„ = 3un_l + un__2 modulo p = 7. We have the generalized Fibonacci sequence 

(/»}? - (°> \ 3> 3> 5> 4> 3> 6> °> 6> 4> 4> 2> 3,4,1,0,...} (mod 7). 
Since z = 8 = p 4-1, every recurrence sequence with parameters (3,1) is equivalent to {/„} modulo 
7. For e = 3, we have / 3 = / 3 + 3 and / 2 = ~/2+3 (m°d 7). For £ = 5? we have / 5 = /5+5 and 
A ^ - ^ - s (mod 7). 

Since Somer has treated the case p = 3 (mod 4) completely, in the following we only con-
sider the case / ? s l (mod4). 

For the case /? = 1 (mod 4), by Lemma 2.3, we have that z \ (p +1) /2; hence, by Lemma 2.4, 
k = 4z. Thus, k>p occurs only if z = (p + l)/2; hence, we have to consider only the case 
z = (p + l)/2. In this case, by the Remark following Lemma 2.2, there are exactly two distinct 
equivalence classes of recurrence sequences with parameters (a, 1) modulo p. One is equivalent 
to {fn} modulo p and the other is equivalent to {/„} because of the following. 

Lemma 3.2: Let /? = 1 (mod 4) be a prime such that x2 - ax -1 == 0 (mod p) is not solvable. 
(i) The generalized Lucas sequence with parameters (a, 1) is not equivalent to the generalized 

Fibonacci sequence with parameters (a, 1) modulo/?. 
(ii) Let z be the rank of {fj modulo/?. Then, for every t,A e Z, ltIz_t+x = {-l)xlt_xh-t (mod/?). 

Proof: (I) For {/„}, we have f*-fn^fn+l = (-If "I Suppose that {un} is equivalent to {/„} 
modulo p. Then there exist r and y such that un = r/w+y- (mod p) for all w. Thus, w2 - un__$in+l = 
( - f ^ - V 2 (mod/?); hence, it is a quadratic residue modulo/? for all n because -1 is a quadratic 
residue modulo p. On the other hand, /2 -/n_i4+i = (-l)w(a2 +4) which, by assumption, is not a 
quadratic residue modulo/?. Our first claim follows. 

fill Since {/„} is not equivalent to {fj modulo/?, it follows that /„ # 0 (mod/?) for all n. By 
Lemma 2.7(i), we have that ltl^\ = -lz_J~ls+l, /,_i£!2 - -4-/+i£i+2> ••• (m°d P)- Multiplying on 
both sides, our proof is complete. D 

From the proof above we know that, if z = (/? + !) / 2, then {un} is equivalent to {/„} modulo 
p if and only if f#2 - un_lun+l is a quadratic residue modulo/? for all n. 

By Lemma 2.6(ii), for each t with 1 < t < k = 2(/? + l), we have that ft = ±ft (mod /?) for 
some /, where 1 < J <z = (/?-*-1)/2. Thus, if we can find one pair (/,/), where 1</, j < z - l , 
such that ft s ±y^ (mod/?), then the number of distinct residues of {fj modulo/? is less than or 
equal to 2(z-2) + l = /?-2 since fQ = fz~Q (mod/?); hence, {fj does not form a complete resi-
due system modulo p. We only have to claim that there exists an odd integer e such that 1 < e < 
(/? +1) / 2 and f s ±fj+e (mod /?) for some i such that 1 < i < z -1. This claim is sufficient because 
in this case, if i+e>z, then by Lemma 2.6(ii), we have that f = ±f2z^i+e) (modp) and \<2z-
(i + e)< z. (Notice that 2z-(i + e)-i is also odd.) Now, for a fixed odd integer e9 consider the 
sequence {un} such that un = fn- fn+e. Since e is odd, it follows by the Binet formulas that 
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Since p = 1 (mod 4), it follows that there exists i with 1 < i < z-1 such that f = fi+e (mod p) if 
and only if {un} is equivalent to {/J modulo p if and only if le is a quadratic residue modulo p. 
Similarly, using the Binet formulas to show that, if u'n = fn +fn+e, then (u'J2 - u^u'^ =(-lf-lley 

we find that there exists j such that 1 < j < z -1 and such that fj = -fJ+e (mod p) if and only if le 

is a quadratic residue modulo p. We remark that lz is a quadratic residue modulo p since, for 
e^z,u0 = f0-fz = 0(modp). 

Theorem 3 J: Let {/„} be the generalized Fibonacci sequence with parameters (a, 1) and letp be 
a prime such that p = 1 (mod 4) and (D/p) = -l9 where D = a2 +4. Then, for p > 5, {/J does 
not form a complete residue system modulo/?. 

Proof: Assume that le is not a quadratic residue modulo p for all odd integers e such that 
1 < e < z. We shall get a contradiction. 

First, we consider the case p = 5 (mod 8). By substituting / = (z -1) / 2 in Lemma 2.6(1) and 
j = (z + l ) /2 in Lemma 2.7(i), we have that {z+iy2l(Z-iy2

 anc* f(Z+i)nf^-i)/2 a r e solutions to 
x2 = -1 (mod p); hence, neither is a quadratic residue modulo p. Note that /0 = 2 is not a 
quadratic residue modulo /?, either. By assumption, lx = a is not a quadratic residue modulo p. 
By Lemma 2.7(1), IXIQ1 = -lz^l~l (mod p); hence, lz_t is a quadratic residue modulo p. By the 
assumption (/z_2 //?) = - 1 , we have that (/21p) - 1 because /2/fl = -4-2^7-1 (mod/?). By induction, 
we have that (JJI p) = -1 for odd i, but (/,- //?) = 1 for even j , where 1 < i, j <z-l. This means 
that /fijl\ is not a quadratic residue modulo p for every t such that 2 < t < z -1. Note that every 
element of {/r/rl\ 12 < t < z -1} is in a distinct residue class modulo p and that there are z - 2 = 
(p-3)/2 of them. Because {/w} and {/w} are not equivalent modulo py {lfi\ \2<t< z-\) and 
{/r//-i 12 < / < z -1} are disjoint modulo p. It follows that among {ftftz\ 12 < / < z -1} there is 
only one which is not a quadratic residue modulo p. But we know that neither f^+^nf^-^n n o r 

f2ffl -a-lx is a quadratic residue modulo p. We get a contradiction because, by the assump-
tion, p>5, (z + l) /2 = 0 + 3) /4>2. 

For the case p = \ (mod 8), {z+l)i2^z-m a n d f(z+mf{z-\)i2 a r e r o o t s of x2 = -1 (mod p); 
hence, both are quadratic residues modulo p. Note that /0 = 2 is also a quadratic residue modulo 
p. By the same reasoning as above, we have that (lt Ip) = -1 for every integer i such that 1 < / < 
z - l ; hence, ltt^\ is a quadratic residue modulop for every / such that 2 < t <z-1. Therefore, 
among {ftftZ\ | 2 < t < z -1}, f(Z+iy2f(z'-i)/2 *s the only quadratic residue modulo p. However, 
since / 2 = a = lt is not a quadratic residue modulo p, it follows that f4 = f2l2 is a quadratic residue 
modulo p. Hence, one of f3f2

l or f4ffl is a quadratic residue modulo p. We get a contradic-
tion because, by the assumption, p > 17, (z -f 1) / 2 = (p + 3) / 4 > 4. D 

4 REDUCED RESIDUE SYSTEMS OF SECOND-ORDER 
RECURRENCES MODULO p 

From the previous section, we conclude that, if p>l and /? |a2+4, then every recurrence 
sequence {un} with parameters (a, 1) does not form a complete residue system modulo p. 
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It would be Interesting to know whether or not the recurrence sequence {un} forms a reduced 
residue system modulo/?. 

For the prime p such that p \a2 + 4, since z = p, there are exactly two distinct equivalence 
classes modulo/?. One is the equivalence class of {/J modulo/? and the other is the equivalence 
class of {vj which satisfies v0 = 1 and vx = a, where a is the double root of x2 - ax - 1 = 0 (mod 
p). We already know, by [3], [11], and [12], that {fn} forms a complete residue system modulo 
p. Moreover, {vj also forms a reduced residue system modulo/? if and only if a is a primitive 
root modulo/?, since vn = an (mod/?). 

Definition: Let a be a root of x2 - ax -1 = 0 (mod /?). We call a a generalized Fibonacci primi-
tive root with parameters (a, 1) modulo p if a is a primitive root modulo p. For the case a = 1, 
we call It a Fibonacci primitive root modulo p. 

Brison [1], using Hermite's criterion for a permutation polynomial over a finite field (see [6]), 
proved that, for p > 7, a recurrence sequence {u„} with parameters (1,1) has the property that 
{111,112,..., wp„i} is a reduced residue system modulo p if and only if {uj is equivalent to the 
sequence {vn} modulo py where v0 = 1 and vt is a Fibonacci primitive root modulo p. Brisonfs 
method can be applied directly to recurrence sequences with parameters (a, 1). Therefore, we 
have the following lemma. 

Lemmm 4.1: Let p > 7 be a prime. Thee a recurrence sequence {un} with parameters (a, 1) has 
the property that {tsh % ..., up^} is a reduced residue system modulo p if and only if UJU[X mod-
ulo/? is a generalized Fibonacci primitive root with parameters (a, 1) modulo/?. 

For a prime p > 7 such that a2 +4 Is a quadratic residue modulo/?, the period of every recur-
rence sequence with parameters (a, 1) modulo p divides p-l. Therefore, we rephrase Lemma 
4.1 as follows. 

Proposition 4.2: Let p > 7 be a prime such that a2 + 4 Is a quadratic residue modulo/?. Then a 
recurrence sequence {ztj with parameters (a, 1) forms a reduced residue system modulo/? If and 
only If u2Uil modulo/? Is a generalized Fibonacci primitive root with parameters (a, 1) modulo/?. 

Fibonacci primitive roots and related topics have an extensive literature. Here, we refer to 
Shanks [10] and Phong [7]. 

Lemma 4.1 does not answer our question for primes p such that a2 + 4 is not a quadratic 
residue modulo /?, because in this case the period of the recurrence sequence with parameters 
(a, 1) modulo/? may be greater than p-l. We have the following example. 

Example: Consider the Lucas sequence {LJ (I.e., LQ = 2, 2̂  = 1, and Ln = Ln_x + 4-2) modulo 
13 and 17. We have that 

{4)Lo ^(2,1,3,4,7,11,5,3} (mod 13), 
(4}'Ii4 * P1,12,10,9,6,2,8,10} (mod 13), 

and 
{4)lo s & !> 14> 7> 1 \ \ l2> 13>8) (mod 17), 

(4}'li8 = 05,16,14,13,10,6,16,5,4,9} (mod 17). 
Therefore, the Lucas sequence forms a reduced residue system modulo 13 and 17. 
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We now claim that, for a prime p > 17 such that a2 +4 is not a quadratic residue modulo p, 
every recurrence sequence with parameters (a, 1) does not form a reduced residue system modulo 
P> 

Let {uj be a recurrence sequence with parameters (a, 1). Since un = u0fn_l+ulfn9 we have 
that the period of {uj modulo p divides the period of {/„} modulo p. Therefore, as before, we 
only have to consider the cases where the rank of the generalized Fibonacci sequence modulo/? is 
(p + l)/2 or p + l. If the rank is p +1, then, since every sequence is equivalent to {/„} modulo p, 
it follows that none of the recurrence sequences with parameters (a, 1) forms a reduced residue 
system modulo p. For the case in which the rank is (p + l)/2, by Theorem 3.3, {/„} does not 
form a complete residue system modulo p. Therefore, we only have to consider the generalized 
Lucas sequence {/„} modulo p. By Lemma 2.7(ii), for every t with l<t<k = 2(p +1), we have 
that lt = ±lt for some i, where 0<i<z = (p + T)/2. Thus, if we can find three distinct pairs (/, j) 
such that 0 < i < j <(/? + !) / 2 and lt s± / . (mod/?), then the number of distinct residues of {/„} 
modulo p is less than or equal to 2(z +1 - 3) = p - 3; hence, {/„} does not form a reduced residue 
system modulo/?. 

For a fixed odd integer e9 consider the sequence {vn} such that vn = In-In+e. Since e is odd, 
we see by the Binet formulas that v2 - vw_jVw+1 = (-l)n~l(a2 + 4)4• Since z - (/? +1) /2 , by Lemma 
2.3, /? = 1 (mod 4). Because a 2 +4 is not a quadratic residue modulo/?, it follows that there 
exists 0<i <(/? + !) 12 such that \ = lj+e (mod/?) if and only if {vj is equivalent to {/„} modulo 
p if and only if le is not a quadratic residue modulo /?. Similarly, by using the Binet formulas to 
show that, if Vn - l„+ln+e, then (v£)2 - v ^ v ^ = (~l)n(a2 + 4)4, we have that there exists j such 
that 0 < j < z and such that lj = -IJ+e (mod/?) if and only if le is not a quadratic residue modulo p. 
If there exist three distinct odd integers e such that 0 < e < z and le is not a quadratic residue 
modulo /?, then, by the routine argument given in the last section, we can find three distinct pairs 
(i, j) such that 0<i <j<z and lt = ±Ij (mod/?). 

Suppose that there are at most two odd integers e such that 0 < e < z and le is not a quadratic 
residue modulo/?. Then, for/? large enough, we claim this leads to a contradiction. 

First, we consider the case p = 1 (mod 8). Recall that z = (/? +1) 12 and lz must be a quad-
ratic residue modulo /?. Since 4 = 2 in this case, we have (/0//?) = (4/ /?)=!; hence, (lt //?) = 
(4-i IP) % Lemma 2.7(i). Again, by Lemma 2.7(1) and by induction, it follows that (lt Ip) = 
(4-i lp) f°r a11 0 < i < (z +1) / 2. Note that i is odd if and only if z - i is even. By assumption, 
there are at most two odd integers e such that 0 < e < z and (le //?) = - ! ; hence, there are also at 
most two even integers e such that 0<e<z and (4lp) = - 1 . Therefore, among {lfl~\\\<i<z} 
modulo p, there are at most eight quadratic nonresidues modulo /?. Hence, there are at least 
(/? +1) 12 - 8 nonzero quadratic residues modulo p in {ltl~\ \ 1 < i < z). Since {ftf~\ 11 < i < z) and 
{j^"1! \\<i<z) modulo p form a reduced residue system modulo p, we get a contradiction if we 
find eight nonzero quadratic residues modulo p among {ftfj~\ |1 <i <z). Let 5 = (z +1) /2. By 
Lemma 2.6(i), we have that fsHf~+)^i - -/^/-i/^lj (mod/?). Therefore, for 5 large enough, if we 
can prove that there exist four integers i with l<i<s = (p + 3)/4 such that j ^ - l ! is a nonzero 
quadratic residue modulo/?, then our claim follows. Recall that f2n = lnfn. Suppose that e is odd 
and (4 lp) = 1. Then we have (fe lp) = (f2e lp) and, since e is odd, it follows that there exists i 
with e<i<2e such that (Jt lp) = (ft_x lp). Thus, fj~\ is a quadratic residue modulo/?. Hence, 
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our strategy is finding s large enough so that we can find four positive odd integers e(i) with 
2e(i) < e(i +1) for 1 < i < 3 and 2e(4) < s such that (4(l) Ip) = 1 for all 1 < i < 4. Since, by assump-
tion, we have at most two odd integers e such that (le /p) = - 1 , the worst case is that {lxl p) -
(l3/p) = - 1 . In this case, we can choose e(l) = 5, e(2) = 11, e(3) = 23, and e(4) = 47. Therefore, 
for s > 94 (i.e., p > 373), we get a contradiction. 

Next we consider the case p = 5 (mod 8). Since /0 = 2 in this case, we have that (/01p) -
-(41p) - - 1 ; hence, (lt Ip) = -(/z_i Ip) by Lemma 2.7(i). Again, by Lemma 2.7(i) and by induc-
tion, it follows that (/, I p) - -(/z_y Ip) for all 0 < / < (z +1) / 2. By assumption, there are at most 
two odd integers e such that 0 < e < z and (le Ip) = - 1 ; hence, there are at most two positive even 
integers e such that 0<e <z and (leIp) = 1. Thus, among {ltl~}i\l <i <z} modulop, there are at 
most eight quadratic residues modulo/?, so there are at least (/? + l ) / 2 - 8 quadratic nonresidues 
modulo/? in {^l\ |1 <i <z}. Therefore, by the same argument as above for s large enough, if we 
can prove that- there exist four integers i with 1 < / < s = (p + 3) / 4 such that ftf~\ is a quadratic 
nonresidue modulo p, then our claim follows. Suppose that e is even and (le Ip) = - 1 . Then we 
have (fe/p) =-(/2«//0> anc^ ft follows that there exists an integer i with e<i<2e such that 
(ifi IP) ~ ~(fi-i Ip)- Thus, fifil\ is a quadratic nonresidue modulo p. Hence, our strategy is 
finding s large enough so that we are able to discover four positive even integers e(i) with 2e(i) < 
e(I -f 1) for 1 < i < 3 and 2e(4) < s such that (4(/) Ip)~-~l for all 1 < i < 4. The worst case is that 
(4Ip) = (4 / /0 = !• I n t h i s c a s e

?
 w e c a n choose e(l) = 6, <2) = 12, e(3) = 24, and e(4) = 48. 

Therefore, for s > 96 (i.e., /? > 381), we get a contradiction. 
We remark that, by more detailed investigation, the argument can be narrowed down to the 

case ,y> 13 (i.e., p> 49). However, in order to avoid this complication, we omit the proof here. 
For the cases p = 29, p = 37, and p = 4l, by direct computation, we have that the generalized 
Lucas sequence with parameters (a, 1) does not form a reduced residue system modulo p. Thus, 
we have the following theorem. 

Theorem 43: Let/? be a prime such that a2 +4 is not a quadratic residue modulo/?. Then, for 
/?> 17, every recurrence sequence {un} with parameters (a, 1) does not form a reduced residue 
system modulo/?. 

In conclusion, we remark that in [11] Somer mentions that, for a more general recurrence 
sequence (i.e., a recurrence with parameters (a, b), where b * 1) our results are not always true. 
The following proposition tells us that, given any prime /?, there exists a generalized Fibonacci 
sequence that forms a complete residue system modulo /?. 

Proposition 4.4: Suppose that either /? = 2 or that/? is an odd prime, -b is a primitive root mod-
ulo/?, and a2 +4b is not a quadratic residue modulo/?. Then the generalized Fibonacci sequence 
if J w'1^ parameters (a, b) forms a complete residue system modulo /?. Furthermore, every 
recurrence sequence with parameters (a, b) which is not equivalent to {/„} forms a reduced resi-
due system modulo/?. 

Proof: The proposition is true by inspection for p = 2. Assume /? > 2. Let z and k be the 
rank and period of {fj modulo/?, respectively. Since a2 +4b is not a quadratic residue modulo 
/?, then z | p +1 by Lemma 2.2. Furthermore, since -b is not a quadratic residue modulo /?, then 
z\{p +1) / 2 by Lemma 2.3. Suppose that p = 1 (mod 4). Then z = 2 (mod 4) and, by Theorem 
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2.4, It follows that k = 2 gcd[z, p -1] = z(p -1). Suppose that p s 3 (mod 4). Then z = 0 (mod 
4) and, by Theorem 2.4, it follows that k = 2gcd[z,p-l] = z(p-Y). This shows that fz+l is a 
primitive root modulo/? in both cases. Since, for every recurrence sequence {uj with parameters 
(a, b)9 Ujz+i = /zii% (mod/?), our proof is complete. D 

Remark: Regarding the statement of Proposition 4.4, we note that, for any odd prime p, one can 
always find residues a and b modulo p such that -b is a primitive root modulo p and a2 +4b is a 
quadratic nonresidue modulo p. It was proved in [4] that, for a fixed residue b modulo p, one can 
always find a residue a such that a2 4-4$ is a quadratic nonresidue modulo/?. 
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