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1. INTRODUCTION 

In [4], the authors have defined oo-generalized Fibonacci sequences, which are defined by 
recurrence formulas involving infinitely many terms and which are generalizations of weighted 
r-generalized Fibonacci sequences with r finite as defined in [1]. In this paper we study the con-
vergence property of such sequences and their associated series. 

Let us first recall the definition of oo-generalized Fibonacci sequences. Take an infinite 
sequence {oj},^, of complex numbers. We set h{z) - J^Lo®*2' for z eC and u(x) - lL*L\\ai lx' f°r 

x G R . Let R denote the radius of convergence of the power series /?, which coincides with that 
ofw. We assume the following: 

0<Z?<oo. (1.1) 

Let X be the set of the sequences {^}*0 of complex numbers such that there exist C> 0 and T 
with 0<T<R satisfying | Jty | <CT for all /'. Note thatXis an infinite dimensional vector space 
over C, which will be the set of initial sequences for oo-generalized Fibonacci sequences associ-
ated with the weight sequence {^}*0. Define / : X -> C by f(x0, xh...) = T^=oaixt- Since the 
series J^LQ^CT converges absolutely, the series defining/ also converges absolutely. Then, for 
a sequence {yQ, y_x,y_2,...} e X, we define the sequence {yh y2,y$9..-} by 

00 

J V = /Ov-i,yn-i,yn-^-..)-Y.ai-\yn-i (n = \2> \-•), 
/=i 

which is well defined as is shown in [4]. The sequence {>>/}, GZ is called an oo-generalized 
Fibonacci sequence associated with the weight sequence {a;}^0. Note that if there exists an inte-
ger r > 1 such that at = 0 for all i >r , then the sequence {a,}*^ satisfies condition (1.1) and the 
above definition coincides with that of weighted r-generalized Fibonacci sequences with r finite 
(see[l]). 

Note that, as far as the authors know, this is a new generalization of the usual Fibonacci 
sequences and almost nothing has been known about such sequences until now, except those 
results obtained in [4]. For example, the following questions naturally arise. 
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(Ql) Are they combinations of geometric progressions, as in the finite case? 
(Q2) Are they asymptotically geometric? 
(Q3) Do they converge to limits? 
(Q4) Do their sums converge to limits? 
(Q5) Is it possible to express the /1th term of such a sequence as a function of n in some 

nice way? 

We briefly recall the results obtained in [4], which are fundamental for the present paper and 
which give an answer to (Q2) above. 
Lemma 1.2 ([4], Lemma 23): (1) Suppose that each at is a nonnegative real number and that 
there exists anS with 0<S<R satisfying 

a0 > $~l - u(S) (or, equivalent^, Sh(S) > 1). (1.2.1) 

Then there exists a unique q GH such that q > S~l, {?~(z+1)}J0
 G %-> a n d fiff1* ~̂2> ̂ ~3> ...) = 1. 

(2) Suppose there exists an Swith 0<S <R satisfying 

\a0\>S-l+u(S). (1.2.2) 

Then there exists a unique q GC such that \q\ > S~\ {q~{i+l)}Zo G x , a n d f(^~\ 9~2> 9~3> •••) = l-

Note that, in the finite case [1], the above q corresponds to the root of the characteristic 
polynomial of maximal modulus. As has been seen in [4], the existence of such a q plays an 
important role in studying the asymptotic behavior of oo-generalized Fibonacci sequences [see 
(Q2) above] and hence in exploring questions (Q3) and (Q4) above (see §5). More precisely, the 
following has been proved in [4]. 

Theorem 1.3 ([4], Theorem 3.10): Let {a,.}*^ be a sequence of complex numbers that satisfies 
(1.1) and admits an S with 0 < S < R satisfying (1.2.1) or (1.2.2), and 

S2u'(S)<\. (1.3.1) 
Then X\mn^O0ynl qn exists and is equal to 

00 

Yfinffy-m oo n 

^ with bm = Y.^k-
Y.K ,=m q 
m=Q 

In the following, we always assume that the conditions of Theorem 1.3 are satisfied. These 
conditions demand that the modulus of the leading weight coefficient a0 should be sufficiently 
large (see also §5). There are many sequences that satisfy these conditions. For example, take an 
arbitrary holomorphic function hx(z) defined in a neighborhood of zero. Then the sequence 
appearing as the coefficients of the power series expansion of the holomorphic function h(z) = 
hx(z) + a at z - 0 satisfies the above conditions for all a eC with sufficiently large modulus \a\. 

In this paper we consider questions (Q3) and (Q4) mentioned above and prove the following 
results, which give answers to the questions in certain situations. 

Theorem 1.4: Suppose that each at is a nonnegative real number and that E^=0 hmqmy_m ^ 0. 
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1. The following three are equivalent. 
(a) The sequence {y„}*=1 does not converge. 
(b) sr=o«,>i-
(e) q>\. 

2. The following three are equivalent. 
(a) The sequence {y„}"=1 converges to a nonzero real number. 

(e) q = \. 

Furthermore, in case 2(a), we have 
00 

2-4 ^ms-m oo 

l i m J n = - < L w i t h bm = Yjai. 

/w=0 

3. The following three are equivalent. 
(a) The sequence {y„}J|Li converges to zero. 
(b) sr=0^<i. 
(c) q<l. 

Theorem 1.5: Suppose that each at is a nonnegative real number and that Y£^bmqmy_m * 0. 
L The following three are equivalent. 

(a) The series S*=1 >>„ does not converge. 
(b) zr=o«^i-
ft) <7>1. 

2. The following three are equivalent. 
(a) The series Z*=iJ>w converges. 
(b) zr=0^<i-

Furthermore, in case 2(a), we have 
oo oo oo / oo \ 

Z v _ y=o >=y w=o V/=m y 
•^ « OO 0 0 

When a, are general complex numbers, we have the following theorem. 

Theorem 1.6: Suppose that Z*=0 K^y-m * °-
1. We have the implications (b) => fcj <=> fa) among the following: 

(a) The sequence {\yn |}^=1 converges to oo. 
(b) Ki-zr=iKi>i. 
(c) \q\>l. 
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2 The following two are equivalent. 
(a) The sequence {\yn |}^=1 converges to a nonzero real number. 
(h) |*| = 1. 

Furthermore, in case 2(a), we have 

lim[)/J= 
2XO-
m=Q 

TK 
m=0 

J. We have the implications (b) => (c) <=> f a) among the following: 
(a) The sequence {yn}™=i converges to zero. 

m sr=oKi<i-
(c) \q\<\. 

Theorem 1.7: Suppose that S L o ^ > - m * °-
/. The following two are equivalent. 

(a) The series Z"=il.y„ | does not converge. 
(b) \q\>\. 

2. The following two are equivalent. 
(a) The series Y%=1\yn | converges. 
(b) \q\<h 

Furthermore, in case 2(a), we have 
oo oo oo f oo A 

Z y _ 7=0 *=J m=0 \i=m J 
°° oo 

i-5> i-5> 
/=0 /=0 

Note that the above results generalize some of the results of Gerdes [2], [3], concerning 
weighted r-generalized Fibonacci sequences with r = 2 and 3. 

The paper is organized as follows: In §2 we prove the convergence result, Theorem 1.4, for 
the nonnegative real case. In §3 we prove the convergence result, Theorem 1.6, for the general 
case. In §4 we give an explicit formula for the generating functions of oo-generalized Fibonacci 
sequences that generalize a result of Raphael [5], and prove the convergence results for the series, 
i.e., Theorems 1.5 and 1.7. Finally, in §5 we give some remarks concerning questions (Q1)-(Q5) 
mentioned above. 

2. CONVERGENCE OF SEQUENCE—NONNEGATIVE MEAL CASE 

In this section, we prove Theorem 1.4. 

Lemma 2.1: J£K = TZ=obnflmy-m * 0 and |^| > 1, then lim^Jj/,,| = oo. 

Proof: By Theorem 1.3, there exists an integer N such that, for all n > N, we have 
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\{ynlq")-K\<\K\l2. 
In particular, we have 

\yn\>\K\\q"\-\K-{ynlq")\\q"\>\K\\q\"l2 

for all n> N. Then the result is obvious. • 

Lemma 2.2: If \q\ < 1, then l im^Jy n | = 0. 

Proof: By Theorem 1.3, there exists an integer N such that, for all n> TV, we have 

IO„/<7")-*l<l-
Then we have 

hence, \yn \ < (\K\ + l)\q\n for all n> N. Then the result is obvious. • 

Lemma 2.3: Suppose that each at is a nonnegative real number. 
(1) IfZSo^ >l,then?>l. 
(2) lfZT=o^i=^,thmq = l. 
(3) I fZ^o^ < l , t h e n ^ < l . 
Proof: Let #>: [0, R) -> R be the function defined by #?(x) = x/?(x), which is strictly increas-

ing. Note that <p(x) = 1 if and only if f(x, x2, x3,...) = 1. 
(1) When S < 1, we have nothing to prove, since q > S~l. When S > 1, we have 1 < S < R 

by our assumption and 

<p(l) = K\) = fdai>\ = <p(q-i) 
/=0 

by Lemma 1.2. Thus, we have 1 > q~l, which implies that q > 1. 
(2) Since Hf=oai converges, we have i? > 1. If R > 1, then x = 1 is the unique solution of 

the equation <p(x) = 1 on the interval [0, R). Thus, q~l = 1 by Lemma 1.2. If R - 1, then #? can be 
extended to a strictly increasing function on [0, R] with (p(l) = 1. This contradicts the assumption 
that <p(S) > 1 for some 5 e [0, R). 

(3) Since ZJ 0
a i converges, we have i? > 1. By the same argument as in (2), we have 

R > 1. Then we have #>(1) < 1 = <p(q~l) by Lemma 1.2. Thus, we have 1 < q~l, which implies 
that q < 1. D 

Theorem 1.4 follows from the above lemmas together with Theorem 1.3. 
The condition that Y^n=^bmqmy_m ^ 0 is satisfied, for example, for yt = g, where {gz}7 e Z is 

the sequence as defined in [4, §3]. Thus, we have the following corollary. 

Corollary 2.4: Let {g^L\ be the oo-generalized Fibonacci sequence associated with the initial 
sequence {g.j}^=0, where g0 = l and g_t = 0 for i > 1. If all at are nonnegative real numbers and if 
SJloa/ = 1> *hen ̂ e sequence {&•},*! converges to 
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3, CONVERGENCE OF SEQUENCE—GENERAL CASE 
In this section we prove Theorem 1.6. 

Lemma3.1: If |a0| - I ^ a , . | > 1, then \q\>\. 

Proof; When S < 1, we have \q\ > 1 by Lemma 1.2. When S > 1, we have 1 < 5 < i?. Con-
sider the function t: [0, i?) -» R defined by f(x) = xV(x), which is strictly increasing. Then we 
have r(l) < t(S) < 1 by condition (1.3.1). Furthermore, by our assumption, we have \a0 |> 1 + u(l). 
Hence, in (1.2.2) and (1.3.1), we may assume that £ = 1. Thus, we have \q\ > 1 by Lemma 1.2. 
This completes the proof. • 

Lemma 3.2: If Z^oK-1 < 1> then \q\ < 1. 

Proof; We have 
oo oo 

i = 0 

0+1) 

/=o 
^IM^Y - i i/+i 

Thus, we have \q l \ > 1. This completes the proof. • 
Theorem 1.6 follows from the above lemmas together with the lemmas in §2 and Theorem 

1.3. 

Corollary 3.3: Let {g^fLi be the oo-generalized Fibonacci sequence associated with the initial 
sequence {giJJo* where g0 = l and g_t = 0 for / > 1. Then the sequence {g}^ converges to a 
nonzero complex number if and only if | q | = 1. 

4 GENERATING FUNCTION AND CONVERGENT SERIES 

First, we prove the following formula for the generating function of oo-generalized Fibonacci 
sequences, which generalizes a result of Raphael [5]. 

Theorem 4.1: Suppose that the sequence m ^ 0 satisfies the condition in Lemma 1.2. Then the 
generating function of the sequence \y^=\ is equal to 

where h(z) = J^L^a^1 and 
•zh(zY 

(, \ 

More precisely, the above equality holds for all z e C with \z\ < \q\~l. 

Proof: First, consider the power series k(z). Let the radius of convergence of k be denoted 
by R!. Then we have 

( 
R! lim sup n I>/^-/ 

'=; 

V1 

Since the sequence {y0, y-i, y-2> • •-} *s a n element of X, there exist C > 0 and T with 0< T <R 
such that y_t < CT for all i > 0. Thus, we have 
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lim sup j \ 
/->oo y 

< lim sup y EK|C7*-> = lim sup l ^ W ? 
y->oo y i=j y-»oo y i /=y 

< lim sup ̂ -{/u(T) = —. 

Thus, we have R' >T. Since we can choose Tas close to R as we want, we have R > R. Thus, 
in particular, for z G C with \z\ < R, the series k(z) converges absolutely. 

Therefore, for z with | z\ < R, we have 

V/=o ) V. ;=o A<=o 

= Ji + O2 - %Vi)* + O s " ^ 2 - " l ^ y 
+ 0>4 - «oJ3 - «i J2 - a2^i)z3 + • • • 

y=0 ^1=/ 

\ 
k(z), 

where we have changed the order of addition appropriately, which is allowed since all the series 
above converge absolutely. Thus, as long as 1 -zh(z) * 0, we have 

yy ^- m 
On the other hand, we have q~lh(q~l) = 1 and that q~l is the solution for zh(z) - 1 which has the 
smallest modulus by Lemma 1.2. Hence, for \z\ < \q\~l, we have (4.1.1). This completes the proof 
of Theorem 4.1. D 

Now Theorem 1.5 follows from Theorems 1.4 and 4.1. 

Proof of Theorem 1.7: By Theorem 1.3 and Lemma 2.1, if\q\ > 1, then the series EJJLiLyJ 
does not converge. Suppose that \q\ < 1. The radius of convergence of the power series 

7=0 

is equal to the radius of convergence R" of the power series 

i=0 

By Theorem 4.1 together with our assumption, we have R" > \q\~l > 1. Thus, the series c(z) for 
z-\ converges. Then the rest of Theorem 1.7 follows from Theorem 4.1. This completes the 
proof. • 
Corollary 4.2: Let { g } ^ be the oo-generalized Fibonacci sequence associated with the initial se-
quence {&_;}*()> where g0 = 1 and g_t = 0 for / > 1. If \q\ < 1, then the series T*=l gf converges to 

00 / / 00 

z=o / V 1=0 

332 [AUG. 



CONVERGENT ^-GENERALIZED FIBONACCI SEQUENCES 

5, CONCLUDING REMARKS 

In this section we give some remarks about questions (Q1)-(Q5) raised in §1. 
About (Ql), in the finite case, the answer to this question is given by a Binet-type formula 

(e.g., see [1]). The question in the infinite case is also posed in [4, Problem 4.5]. In a forth-
coming paper we will consider approximation of oo-generalized Fibonacci sequences by finitely 
generalized ones and will give an asymptotic Binet formula which will give an answer to the ques-
tion in a certain sense. This study is also closely related to question (Q2). 

About (Q2), in the finite case, it has been shown that if the characteristic polynomial has a 
simple root of maximal modulus then the sequence is asymptotically geometric (see [1]). This 
condition is satisfied as long as the leading weight coefficient a0 has sufficiently large modulus 
(see Theorem 15 and Remark 16 of [1]). In [4], the authors have shown that a statement similar 
to this also holds in the infinite case as well, which is nothing but Theorem 1.3 of the present 
paper. 

About (Q3) and (Q4), Theorems 1.4 and 1.5, respectively, give satisfactory answers in the 
nonnegative real coefficient case under our assumption. In the general case, Theorems 1.6 and 
1.7, respectively, give partial answers to the questions. 

About (Q5), in a forthcoming paper, combinatorial expressions for the general terms of an 
oo-generalized Fibonacci sequence will be studied. 

ACKNOWLEDGMENT 

The authors would like to thank Francois Dubeau for his helpful comments and suggestions. 
They would also like to thank the anonymous referee for invaluable comments and suggestions. 
W. Motta and O. Saeki have been partially supported by CNPq, Brazil. The work of M. Rachidi 
has been done in part while he was a visiting professor at UFMS, Brazil. O. Saeki has also been 
partially supported by the Grant-in-Aid for Encouragement of Young Scientists (No. 08740057), 
Ministry of Education, Science and Culture, Japan, and by the Anglo-Japanese Scientific 
Exchange Programme, run by the Japan Society for the Promotion of Science and the Royal 
Society. 

REFERENCES 

1. F. Dubeau, W. Motta, M. Rachidi, & O. Saeki. "On Weighted r-Generalized Fibonacci 
Sequences." The Fibonacci Quarterly 35.2 (1997): 102-10. 

2. W. Gerdes. "Convergent Generalized Fibonacci Sequences." The Fibonacci Quarterly 15.2 
(1977): 156-60. 

3. W. Gerdes. "Generalized Tribonacci Numbers and Their Convergent Sequences." The Fibo-
nacci Quarterly 16.3 (1978):269-75. 

4. W. Motta, M. Rachidi, & O. Saeki. "On oo-Generalized Fibonacci Sequences." The Fibo-
nacci Quarterly 37.3 (1999):223-32. 

5. B. L. Raphael. "Linearly Recursive Sequences of Integers." The Fibonacci Quarterly 12A 
(1974): 11-37. 

AMS Classification Number: 40A05 

2000] 

<»•><• 

333 


