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1. INTRODUCTION 

Let {tf/}y=o (r>2,ar_!^0) be a sequence of real numbers. An r-generalized Fibonacci 
sequence {Vn}~^0 is defined by the following linear recurrence relation of order r: 

Vn+l=a0Vn+alVn_l + --+ar_lVn_r+l forn>r-l, 

where VQ, ...,Vr_x are specified by the initial conditions. Such sequences are largely studied in the 
literature (see, e.g., [2], [3], [6], and [7]). Let {dj}j>0 be a sequence of real numbers and 
consider the sequence {Vn}neZ defined by the following linear recurrence relation of order oo: 

^ + l = V " n + ^ - l + - - - + « i ^ - m + ' -S for/! £ 0 , (1 ) 

where {V_J}J>0 are specified by the initial conditions. Such sequences, called ^-generalized 
Fibonacci sequences, were introduced and studied in [8]. We shall refer to them in the sequel as 
sequences (1). 

The aim of this paper, motivated by [8] and [10], is to study the connection between 
sequences (1) and Markov chains when the coefficients {^}y>o a r e nonnegative. Such a connec-
tion is a generalization of those considered in [9] for r-generalized Fibonacci sequences. As in 
[8], we consider some hypotheses on {aj}j>0 and {V_J}J>0 in order to ensure the existence of the 
general term Vn for any n > 1, and then we extend results of [3] and [9] to the case of sequences 
(1). More precisely, using some Markov chain properties (see [1], [4], and [5]), we give a neces-
sary and sufficient condition on the convergence of the ratio -p-, where q > 0 is a specified real 
number. This result extends the sufficient conditions of [8], under the hypotheses considered on 
the two sequences {aj}j>0 and {V_J}J>0. We also give the expression lim^+^-p-. 

This paper is organized as follows. In Section 2 we study the case of sequences (1) in con-
nection with Markov chains, when the coefficients {#,}, >o a r e nonnegative with Z7>0^, = 1- We 
also give a necessary and sufficient condition for the convergence of Vn and the expression of 
l im^^f^. In Section 3 we extend the results of Section 2 to the case of arbitrary nonnegative 
coefficients. 

2. SEQUENCES (1) AND MARKOV CHAINS 

2.1 Fundamental Hypotheses and Existence of the General Term 
Let {V„}neZ be a sequence (1). Its general term Vn does not exist in general for any n > 1. 

For example, suppose that {a^j;>0 and {V_J}J>0 are defined by 

a0 = 1, aj = / forj > 1 and V0 = 1, V_j = /^+ 2> for/ > 1. 

Then, by a direct computation, we obtain 
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^ 1 + E l and V2=V1+V0^Y m • = +oo . 
—if - * - ^lim-iy 

Thus, to ensure the existence of Vn for any n > 0, we need some hypotheses on the two sequences 
iaj}j>o a nd {V-j}j>o- More precisely, suppose that the following hypotheses are satisfied: 
(H.1) For any m > 0, there exists k > m such that ak > 0. 
(H.2) There exists C > 0 such that ak<C. 
(H.3) The series Zw>0| Hw | is convergent. 

The two hypotheses (H.2) and (H.3) are trivially satisfied in the case of r-generalized Fibo-
nacci sequences. These three hypotheses are more convenient with a Markov chain formulation 
of sequences (1). They are not necessary for the existence of the general term V„. Other condi-
tions are considered in [8]. 

2.2 Sequences (1) Whose Coefficients Are Nonnegative with Sum 1 
Suppose that the coefficients {aj}j>0 of the sequence (1) satisfy hypothesis (H.l) and the 

following condition: 
2>y = l- (2) 

It is obvious that identity (2) implies (H.2) is trivially satisfied. Consider the following matrix: 

P = 

aQ 

1 
0 

a\ 
0 
1 

0 
0 0 

0 
(3) 

Condition (2) shows that the matrix P defined by (3) is a stochastic matrix. Then P is a transition 
matrix of a Markov chain (JT), whose state space is N = {0, 1,...}. Set P = (P(n, m))^meN, then 
^(0, m) = am and Pin, m) = 8n_lm for n > 1, where SkfS is the Kronecker symbol. Set Pk = P- • • P 
(k times), then Pk =(P^k)(n,rn))^meN for any k>l, where P^k\n,m) is the probability to go 
from the state n to the state m after k transitions. Since P(n, n -1) = 1, we derive 

P(n'm\n9m) = l for my m<n. (4) 

Then we have the following proposition. 

Proposition 2.1: Let {®J}J>O be a sequence of nonnegative real numbers such that hypothesis 
(H.l) and condition (2) are satisfied. Let (2T) be the Markov chain associated to the matrix P 
defined by (3). Then: 
(i) The chain (2T) is irreducible. 

(ii) The chain (2T) is recurrent positive if Tm>0(m + l)am <+oo and it is recurrent null if 
Hm>o(m + i)am = +oo. 

Proof: (i) Let n and m be two states of (9"). Suppose, for example, that m<n. Hypothesis 
(H. 1) and relation (4) imply that there exists nQ > n such that a„0 > 0 and thus 
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pCm+Ko+l-*)^ W ) > pW(m, 0)P(0, ^)P( W°-W )(«0, W) 

which implies that jp(m+wo+1-")(w? m)>an > 0. Hence, the Markov chain (2T) is irreducible. 

(ii) To study the nature of (9~), it is sufficient to study the nature of the state 0. Starting 
from 0, the Markov process associated to (9~) will go at the first transition to a state m with prob-
ability am. And it will be back to 0 with probability 1 after m transitions. Therefore, am is the 
probability of going from 0 and coming back to this state after m + \ transitions. The probability 
of coming back to 0 is Z*=0

am = *• Therefore, (2T) is recurrent. Let TQ be the real random 
variable which defines the first instant of return of the process to 0. We have established that 
am - Pr{7^ = m +1}; thus, the mean value of T0 is E(T0) = Hmlo(m-hl)am. Then (2T) is recurrent 
positive if SOT > o (m + ̂ )a

m < +00 and it is recurrent null if Ew > 0("* + ̂ )a
m = +00 • 0 

Remark 2.1: Let R be the radius of convergence of the series Hm>0amXm. Hypothesis (H.2) 
implies that R>1. R is also the radius of convergence of the series Hm>QtnamXm. Hence, if , 
R > 1, we have Sm>o ma

m < +0° • Then (2T) is recurrent positive. 

Recall that the period d{m) of a given state m of (2T) is defined by 

rf(w) = CGD{k e N; P(/r)(w, m) > 0}. 

It is well known that, for an irreducible Markov chain (2T), we have d(rn) = d(0) = rf for any m in 
(2T) (see, e.g., [4]). We recall here a very well-known theorem on the asymptotic behavior of a 
Markov chain. 

Theorem 2.2: (See, e.g., [4].) Let P = (P(n,m))n mGN be the transition matrix of an irreducible 
Markov chain (9"). Then: 
(i) The sequence of matrices {Pk}k>0 converges if and only if the Markov chain (2T) is 

aperiodic or identically d-\. 
(ii) If (2T) is recurrent null, then l im^^, P^h\n, m) = Q for any states n and m in (2T). 
(Hi) If (2T) is recurrent positive, then limk_J>+co P^k)(n, m) does not depend on n and we have 
limk_>^0 P^k\n, m) = U(m), where TL(m)>0 for any m. And the stationary distribution vector 
n = (n(0), 11(1),..., U(m),...) is the solution of the following matrix equation 

n = n-p, (5) 
where Z^on(nf) = l. 

Let {Vn}neZ be a sequence (1) and consider the infinite column vector Xn = (Vn,Vn_l,..., 
Vn_k,...)', where Rl means the transpose of R. We can show easily that expression (1) may be 
written as follows: 

X„+l = PX„ or X„+l = P"+iX0 (6) 

for any n > 0, where X0 = (V0, V_h..., V_k,...)' is the infinite vector of the initial conditions. With 
the use of (6), Proposition 2.1, and Theorem 2.2, we can extend the necessary and sufficient 
condition of convergence established in [3] and [9] for r-generalized Fibonacci sequences to the 
case of sequences (1) as follows. 
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Theorem 23: Let {aj}Jk0 and {V_J}J>0 be two sequences of real numbers such that hypotheses 
(H.l) and (H.3) and condition (2) are satisfied. Then the associated sequence (1) converges if 
and only if the following condition (%): CGD{y +1; a} > 0} = 1 is satisfied, where CGD means the 
common great divisor. 

Proof: From (6), we derive that the sequence (1) converges for any choice of the initial 
conditions {V_J}J>0 if and only if the sequence of matrices {Ph}k>0 converges. Then, let us study 
the aperiodicity of the Markov chain (2T) associated with the matrix P. We search the period of 
the state 0. Starting from state 0, the process will go at the first transition to a state m with prob-
ability am > 0. And it comes back to 0 after m transitions with probability 1. Hence, the process 
returns to 0 after m + l transitions. Starting from the state 0 after crossing kx times the state mx, 
k2 times the state /% ... . Then the process has made kl{ml +1) + ̂ (mj +1) + • • • transitions. Thus, 
P(n)(0,0) > 0 if and only if n is of the following form: n — kl(ml +1) + k^m, +1) H — , where kx, 
k2,... are in N. Hence, we have {n; P(n)(0, 0) > 0} = {«; n - kx{jnx +1) + k^rr^ +1) + • • •; kx, k2y... 
GN} , which implies that CGD{«; P(w)(0,0) > 0} = CGD{m +1; am > 0}. Then (T) is aperiodic if 
and only if condition (%) is satisfied. Thus, the sequence (1) converges if and only if condition 
(<€) is satisfied. D 

The following corollary is an immediate consequence of Theorem 2.3. 

Corollary 2.4: Under the hypotheses of Theorem 2.3 and if aQ > 0, then the sequence (1) con-
verges. 

Now we shall find the expression of the limit of the sequence (1) when condition (%) is 
satisfied. 

Lemma 2.5: Let {dj}j>0 be a sequence of real numbers such that hypothesis (H.l) and the two 
conditions (2) and (<€) are verified. Let P = (P(n, m))„tm^0 be the stochastic matrix (3). Then 
we have: 
(i) l i m „ ^ J**>(n, /«) = 0 if E£ 0 ( / +1)«, = +°° • 

(ii) l i m ^ ^ P(k)(n, m) = U(m) if Z%(J + l ty < +°°, where 

Proof: Proposition 2.1 shows that (9") is irreducible. And condition (%) implies that (2T) is 
aperiodic and limn_^^X)P(k\n,m) exists. Proposition 2.1, Theorem 2.2, and condition (%) allow 
us to see that (i) ( J ) is recurrent null with l i m ^ ^ P(k)(n, m) = 0 if TZoim + l)am = +°°> a n d 00 
(2T) is recurrent positive with lim^^ P(k)(n,m) = Tl(m) if Z^0C/ + 1 H <+00> w h e r e n(m) i s 

the (/w + l)* component of the stationary distribution vector U = (0(0), 11(1),..., 11(A),...) which 
satisfies 

+00 

n = H P and Xn(w) = 1- (8) 

The first equation of (8) is equivalent to an infinite system of equations whose unknown variables 
are Il(m). By taking into consideration the second equation of (8), we derive 
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U(m)= Z!=m~l . U ^l=m al 

Theorem 2.6: Under the hypotheses of Theorem 2.3 and if condition (c6) is satisfied, we have: 
(i) l i m ^ F ; - 0 if Z ^ O ' + I H = +00-

(fi) l i m ^ ^ F„ = Z p 0 n(w)F w if Z%(j + l)ay < +oo, where the U(m) are given by (7). 

Proof: Expression (6) shows that Vk = Z ^ 0 i**>(0, m)V_m. The inequality |J**>(0,m)H M | < 
\V_m | and hypothesis (H.3) imply that 

+O0 

UmKt = £ ( l i m ^ ( O , ™ ) ) ^ . 
fc-»+oo *--* fc-H-oo 

Hence, using Lemma 2.5, we derive the result. D 

Theorem 2.6 is a generalization of Theorem 2.4 of [9] to the case of sequences (1) under 
hypotheses (H.l), (H.2), and (H.3). 

2.3 The Case of CGD{w +1; am > 0} > 2 
Let {c*j}j>o be a sequence of nonnegative real numbers which satisfies hypothesis (H.l) and 

condition (2). Suppose that CGD{w +1; am > 0} > 2. Let P be the stochastic matrix (3), and con-
sider the Markov chain (9~) associated with P. Then we have the following proposition. 

Proposition 2.7: (See, e.g., [5].) Let (2T) be an irreducible recurrent positive Markov chain. Let 
dbe the period of the states of (2T). Suppose that d > 2. Then the state space E of (2T) may be 
written as follows: E = Dl^uD2^j"-KjDd, where Dt r\Dj = 0 for i&j, such that if the process 
is in the class Dt at the instant n, then it can go to the class Dj+l after one transition, with prob-
ability 1 (for / = d, it goes from Dd to Dx). Each class Z> (1 < / < d) is called a cyclic class. For 
any k, I with k<l<d and i,j in E, the following limit, l im^.^ P(m/+/)(/, 7), exists and for any 
/ G Z\ we have 

l i m pi»i+i)(jj)={dUU)> ifJeD*+> ( m o d r f )> 
"->+<*> ' | o , if not, 

where H(j) is the (7+ 1)* component of the stationary distribution vector of P. 

In our case, we have P(i +1, /) = 1; hence, the cyclic classes are given by Dj = {nd + j ; n > 0}, 
j = 0,l,...,d. We derive the following result from Proposition 2.7. 

Theorem 2.8: Under the hypotheses of Theorem 2.3, suppose that the Markov chain (2T) associ-
ated with P is irreducible recurrent positive. Suppose that CGD{m +1; am > 0} > 2. Then {Vn}n e Z, 
the sequence (1) has d subsequences defined by {Vnd+i}neZ, where / = 0,1, ...,d-l, and each of 
these subsequences, which is also a sequence (1), is convergent. More precisely, for any arbitrary 
initial conditions and a fixed / (0 < / < d -1), we have 

KmVnd+l=d2Tl(kd + l)V_(kd+l), 

where the U(m) are given by expression (7). 
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Proof: We have Vnd+l = Z ; : 0 P<"d+l\o, m)V_m. Hypothesis (H.3) implies that 

Mm ^ + / = S ( « m P<"d+l\0,m))V_m, 

and the result is derived from Proposition 2.7. • 

Theorem 2.8 is an extension of Theorem 4.2 of [9] to sequences (1), whose nonnegative 
coefficients satisfy condition (2), under hypotheses (H.l) and (H.3). 

3* SEQUENCES (1) WHOSE COEFFICIENTS ARE NONNEGATIVE 

In this section we consider that the nonnegative coefficients {aj}j>0 are of arbitrary finite 
sum. 

Let {VJneZ be a sequence (1) such that hypotheses (H.l), (H.2), and (H.3) are satisfied. Let 
R be the radius of convergence of the power series 

+00 

/ W = Z V " ' . (9) 

Hypothesis (H.2) implies that R > 1. 
Consider the following limit L - lim _ / ( * ) . The study of sequences (1) depends on the 

following three cases: L < 1, L = l, and L > 1. 

Study of the Case L < 1. In this case, we have J^0am < 1 because R > 1 and the function/is 
not decreasing. Then we have the following result. 

Proposition 3J: Let {Vn}neZ be a sequence (1) such that hypotheses (H.l), (H.2), and (H.3) are 
satisfied. Then, if Y^0am < 1, we have lim^^f^ = 0 for any choice of the initial conditions. 

Proof: Let SN = £^ |F„ |. We have SN = Zl^Zo "mK-m-i I * 2 £ i E^o " J ^ - i I, which 
implies that SN ^l^am{I^\V_k\ +SN). Thus, SN £ ( ! £ „ «»)(££>F-tlX1 - 2 T o « J _ 1 - And 
from hypothesis (H.3), we derive l im^.^ Vn = 0. D 

Study of t ie Case L = 1. In this case, we have the following two subcases: Y^Qam = 1 if R - 1 
and Z^=0

aw < 1 if /? > 1 - The first one is studied in Section 2 and the second one is nothing but 
the preceding case. 

Study of the Case L > 1. In this case, the analytic power series of/defined by (9) is a continu-
ous and not decreasing function on ]0,i?[ that satisfies /(G) = 0. Then there exists x0 G ]0,i?[ 
such that f(xQ) = 1. Set q = 1 /x0 and hm = am /^w+1 for anymeN. Then we have 

6m>0, ^bm = l, and CGD{/w + l; am >0} = CGD{/w + l; ftM >0}. (10) 

Now consider the sequence {Wn}neZ defined by Wn = ~. From relation (1), we derive 

m=0 
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for any n>0. Thus, {Wn}neZ is also a sequence (1) that satisfies the two hypotheses (H.l) and 
(H.2) and condition (2). Hypothesis (H.3) is not satisfied in general by the initial conditions 
W-m)m>0' From Theorems 2.3 and 2.6 and expressions (10) and (11), we can formulate the 
extension of Theorems 5 and 9 of [3] and Theorems 3.1 and 3.3 of [9] as follows. 

Theorem 3.2: Let {Vn}neZ be a sequence (1) such that hypotheses (H.l), (H.2), and (H.3) are 
satisfied. Let {Wn}neZ be the sequence defined by (11) and suppose that the initial conditions 
W-m}m>o satisfy hypothesis (H.3). Then: 

(a) lim,^.^ Wn = l im^.^ -^ exists if and only if condition (c€) is satisfied. 

(b) If condition (<€) is satisfied, we have: 
(i) l i n v ^ ^ O if ^ : 0 ( m + l ) ^ = +oo; 

(ii) lim„_^ J = TZo ^(m)V_mqm if E£>(HI + 1)^ < +oo, where 

n < r a ) = z i l ^ (,2) 
The second expression of l i m ^ ^ - ^ given in Theorem 3.2 is identical to the expression of 

Theorem 3.10 in [8]. 
For q < 1 or ££> < 1, we have \WJ = \Vmqm\< \Vm\. Thus, hypothesis (H.3) is satisfied by 

{W_m}m>0. But for q > 1 or Z^>fl5 > 1, such hypothesis is not satisfied in general by {W_m}m>0. 

Case d = CGD{m +1; am > 0} > 2. In this case, we derive from expression (10) that CGD{m +1; 
bm > 0} > 2. Thus, we can extend Theorem 4.2 of [9] as follows. 

Theorem 33: Under the hypotheses of Theorem 3.2, suppose that d - CGD{m +1; am > 0} > 2. 
Then {Wn}n e Z has d subsequences defined by {Wnd+l}neZ, I - 0,1,..., d -1 that are also sequences 
(1). And each subsequence {Wnd+l}neZ converges for any choice of those initial conditions with 

Km ^ + / = lim ^ = ^ In ( f e / + /)^_(W+0, 

where the n(fci + /) are given by expression (12). 
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