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1. INTRODUCTION AND SUMMARY 

Catalan's sequence of numbers {C„}% = {1,1,2,5,14,42,...} (nr.1459 and ,4000108 of [14]) 
emerges in the solution of many combinatorial problems (see [2], [4], [5], and [16] for further 
references). The moments ju2k of the normalized weight function of Chebyshev's polynomials of 
the second kind are given by Ck /2k (see, e.g., [3], Lemma 4.3, p. 160 for /= 0, and [17], p. II-
3). This sequence also shows up in the asymptotic moments of zeros of scaled Laguerre and 
Hermite polynomials (see [9], eqs. (3.34) and (3.35)). The generating function c(x) - Z^=0 Cnxn 

is the solution of the quadratic equation xc2(x) - c(x) + 1 = 0 with c(0) = 1. Therefore, every posi-
tive integer power of c(x) can be written as 

c"(*) = Pn-i(x)1 + ?«-i(*M*), 0 ) 
with certain polynomials pn_x and qn_x, both of degree (n-l), in IIx. In Section 2, they are 
shown to be related to Chebyshev polynomials of the second kind: 

'"-'w=-(iMi) ̂ Kir^-'B^-^' (2) 
with Sn(y) = Un(y 12). Therefore, it is possible to extend the range of the power n to negative 
integers (or to real or complex numbers). Tables for the Un(x) polynomials can be found, e.g., 
in [1]. Because powers of a generating function correspond to convolutions of the generated 
number sequence, the given decomposition of cn{x) will determine convolutions of the Catalan 
sequence. In passing, an explicit expression for general convolutions in the form of nested sums 
will also be given. Contact with the works of [6], [12], [18], and [5] will be made. 

Together with the known (e.g., [4], [11]) result (valid for real /?), 

one finds, from the alternative expression (1) for positive n, two sets of identities: 

(pi) p-^iz^y,={"-/) (4) 
for n e N0, p e {o, 1,2,..., |_f J}, and 

(P2) J (-1)' ( " " / ~ ' k ^ , = Ck(n) (5) 

for n eN , k E N 0 . 
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For negative powers in (1), two other sets of identities result: 
min([*jlJ,A:-l) , . . 

(«) i i-^~Yl)ck_^{-\r^t-x
l) (6) 

for n e N, k e{o, 1,2,..., |_f J} (ft>r £ = 0, both sides are by definition zero), and 

for « G N , & e N with & ^ [ f j + l- These identities can be continued for appropriate values of 
real n. 

Another expression for the coefficients of negative powers of c(x) is 
min(«, k) s \ 

for f i , iGN, and C0(-n) = 1, C„(0) = 8n^. Also, from (3), Ck{-n) = -Ck_n{n) for n,k e N with 

The remainder of this paper provides proofs for the above given statements. Section 2 deals 
with integer (and real) powers of the generating function c(x). Convolutions of general sequences 
are expressed there in terms of nested sums. In Section 3 some families of integer sequences 
related to the polynomials qn(x) (2) evaluated for x - IIm for m = 4, 5,... and (-V)nqn(x) evalu-
ated at x = -Urn, m e N, are considered. 

2* POWERS ' 

The equation xc2(x) - c(x) + 1 = 0 whose solution defines the generating function of Catalan's 
numbers if c(0) = 1 can be considered as a characteristic equation for the recursion relation 

xrn+i ~rn +r«-i = 0, n = 0,1,..., (9) 
with arbitrary inputs r_x{x) and r0(x). A basis of two linearly independent solutions is given by 
the Lucas-type polynomials {Un} and {Vn} with standard inputs U_x - 0, U§ = 1, (U_2 - -x) , and 
V_j = 1, V0 = 2, (Vx = 1 /x), in the Binet form 

u"-l{x)-c+(x)-c_(xy (10) 

Vn(x) = <(x) + cn_{x) = 1 ( ^ ( x ) - 2^_2(x)), (11) 

with the two solutions of the characteristic equation, viz c±(x) := (l±Vl-4x)/(2x). c(x) := c_(x) 
satisfies c(0) = 1, and c+(x) -II(xc(x)), as well as c+(x) + c(x) = 1 Ix. From the recurrence (9), it 
is clear that, for positive n ̂  0, Un is a polynomial in 1 Ix of degree « - 1 . If c+(x) - c_(x) = 0, 
i.e., x = 1 /4 , equation (10) is replaced by Un(l 14) = 2n{n +1). The second equation in (11) holds 
because both sides of the equation satisfy recurrence (9) and the inputs for V0 and Vx match. One 
may associate with the recurrence relation (9) a transfer matrix 
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T(x 

With this matrix, one can rewrite (9) as 

^ ( " l * 0 * ) <ktT(*) = l/*. (12) 

£W&)-rw($)} <i3) 
Because T" = TT"_1 with input T1 = T(x) given by (12), one finds from the recurrence relation 
(9) with rn = U„ that 

T»(*) = (Un(x) -iU^ix)^ 
(14) 

Note that, for x = 1, one has c±(l) = (l+/'V3)/2, which are 6th roots of unity, and the related 
period 6 sequences are {1 ,̂(1)}" = {0,1,1,0,-1,-1}, as well as {V„(l)}™ = {2,1 , -1 , -2 , -1 ,1} . 
This follows from equations (10) and (11). It is convenient to map the recursion relation (9) to 
the familiar one for Chebyshev's S„(x) = U„(x/2) polynomials of the second kind, viz 

S„(x) = *$_,(*)-S„_2(x), S.t = 0,S0 = l, (15) 

with characteristic equation /P-xA + l = 0 and solutions X±{x) = f(l±yjl-(2/x)2), satisfying 
A+(x)A_(x) = 1 and A+(x) + X_(x) = x. The relation to c±(x) is 

-s[xc±(x) = X±{\l4x). (16) 

The Binet form of the corresponding two independent polynomial systems is 

Xn
+{x)-Xn_{x) 

V l W " A + ( x ) - A _ ( x ) ' ( } 

2Tn(xl2) = X\(x) + Xn_{x), (18) 

and Tn(x/2) = ($„(x) - Sn_2(x)) 12 are Chebyshev polynomials of the first kind. Tables of Cheby-
shev polynomials can be found in [1]. The coefficient triangles of the Sn(x), U„(x), and Tn(x) 
polynomials can also be viewed under the numbers A049310, A053117, and A053120, respec-
tively, in the on-line database [14]. 

The extension to negative indices runs as follows: 

U_„(x) = -xn-lU„_2(x), (19) 

SHn+2)(x) = -$n(x). (20) 

This follows from (10) and (17). Note that from (9), Un is for positive n a monic polynomial in 
l/x of degree n, and for negative n in general, a nonmonic polynomial in x of degree |_-f J. It is 
possible to extend the range of n to complex numbers using the Binet forms. 

A connection between both systems of polynomials is made, using (10), (16), and (17), by 

2 
h 

This holds for n e Z in accordance with (19) and (20) 

Un(x) = \^=\Sn(lI^y (21) 
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After these preliminaries, we are ready to state the following proposition. 

Proposition 1: The rfi1 power of c(x), the generating function of Catalan numbers can, for 
n E Z, be written as 

c\x) = ~U^2(x) + ̂ (x)c(4 (22) 

Proof: Due to c2(x) = (c(x) -1) Ix and c~l(x) = 1- xc(x), one can write 

cn(x)=pn_l(x) + qn_l(x)c(x) 

for n e Z. From cn(x) = c(x)cn~l(x), one is led to qn_x = p„_2 +^gw_2 and pn_x = ~qn^ or 
^_! = {qn.2 - qn-3)/x w i t h inPu* tf-i = 0, % = ! • S o ^-i(x) = Un-i(x) a n d /V-iO) = ~K-2(X) /x • 
Equation (23) then follows from (21). D 

Note 1: Because 
LfJ 

uy)=i(-iy^jjy <n-J)„»-2j 

the explicit form of these polynomials (2) is 

and 

^.W = LI(-i){n _)~J')^(-1-^ *-. = o. 
For negative index one has, due to (20), 

pHn+l)(X)=(^ys„(\/^)=tyy^yy 
and 

qHn+1)(x)=~(^ris^(i/^)=-x ± (-ly^-yiy. 
In the Table, one can find the coefficient triangle for the polynomials {pn(x)}]\ with column 

m corresponding to {\)m, m>0. 
Note 2: An alternative proof of Proposition 1 can be given starting with (17) and (18) which 
show, together with A+(x) - A_(x) = Vx2 - 4, that 

X\{x) = Tn(xl2) ±J(x/2)2-lSn_l(x), (24) 

or, from ±^J(x I If -1 = X±(x) -x/2 and the <$„ recurrence relation (15), 

X\{x) = T„(x/2) - j(5fI(x) + 5'II_2(x)) + 5B_1(x)A±(x) (25) 
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= -^2W+U^±(4 (26) 

Now (23) follows from (16). This also proves that, in Proposition 1, one may replace c(x) by 
c+(x) = l/(xc(x)), from which one recovers the c~n formula for n e N in accordance with (19) 
and (20). 

TABLE. p(n,m) = [l/xm]p_{n}(x) Coefficient Matrix 
it = -! , .• . ,12, m = 0,..., 12 

n\m 
-1 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

0 

~T 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 

~o~ 
0 

-1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

2 

~o~ 
0 
0 

-1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 

3 
~0~ 

0 
0 
0 

-1 
2 

-1 
0 
0 
0 
0 
0 
0 
0 

4 
~0~ 

0 
0 
0 
0 

-1 
3 

-3 
1 
0 
0 
0 
0 
0 

5 
~0~ 

0 
0 
0 
0 
0 

-1 
4 

-6 
4 

-1 
0 
0 
0 

6 
0 
0 
0 
0 
0 
0 
0 

-1 
5 

-10 
10 
-5 

1 
0 

7 
0 
0 
0 
0 
0 
0 
0 
0 

-1 
6 

-15 
20 

-15 
6 

8 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-1 
7 

-21 
35 

-35 

9 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-1 
8 

-28 
56 

10 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-1 
9 

-36 

11 
~0~ 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-1 
10 

12 
~0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-1 

Note 3: For the transfer matrix T(x), defined in (12), one can prove for n e N? in an analogous 
manner, that 

T" = -(-^jVaO/^l + ̂ J'^O./^TCx), (27) 

by employing the Cayley-Hamilton theorem for the 2x2 matrix T with t rT = ^ = detT, which 
states that T satisfies the characteristic equation T 2 - ^ T + ̂ 1 = 0. 

Powers of a function which generates a sequence generate convolutions of this sequence. 
Therefore, Proposition 1 implies that convolutions of the Catalan sequence can be expressed in 
terms of Catalan numbers and binomial coefficients. Before giving this result, we shall present an 
explicit formula for the nih convolution of a general sequence {Q} generated by c(x) = £/=0 Qxl. 
Usually, the convolution coefficients Q(w), defined by cn(x) = Tf=o Q (n)xl, are written as 

CM = I Qfi2 ''' Q. > with h G N<>- (28) 

An explicit formula with (/-I) nested sums is the content of the next lemma. 

Lemma 1—General convolutions: For / = 2,3,..., 

( i IAJ ^ / 
Q(n) = Cg-'QMl Z I<">'> W I I 

U=2 ik=ak) ;=2 
. ci 

- 1 \ 
(29) 
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with 

b2 = l/2, bk = 

ak-0 for k -2,3,...,/-1; a, = max 

U-I.Jij\/k, 
V 7=2 J 

( 
0. 

71! 

(30) 

(31) 

(32) 
(«-/+^=2o-i>;)!(/-2:;=2^)!' 

The first product in (29) is understood to be ordered such that the sums have indices i2J3, ...Jl 

when written from the left to the right. In addition: C0(n) = C$ and Q(w) = nC%~lCv 

Proof: Q(w) of (28) is rewritten first as 

Q(») = 5X«,', O y / o ) W • • • C{, ij e N0, (33) 

where the sum is restricted by 
/ i 

(0: Z^/ = / and ("): Z'y="- (34) 

.(/?, /, {iy} )̂ is a combinatorial factor to be determined later on. (E.g., for n - 3, / = 5, one has five 
terms in the sum: i5 = 1, i0 - 2; i4 = 1, ^ = 1, i0 = 1; i3 = 1, i2 - 1, ?0 = 1; '3 = ^ '1 = 2> h = 2> '1 = 1 > w i t h 

other indices vanishing, and the combinatorial factors are 3, 6, 6, 3, 3, respectively.) (ii) restricts 
the sum to terms with n factors, and (i) produces the correct weight /. These restrictions are 
solved by 

j=2 j=2 J=2 

From ix > 0, i.e., / - T!j=2 jij ^ 0, one infers i2 < |J-]; thus, i2 e [O, |J-J]. For given i2 in this range, 
J3 < L^T2-]. etc- In general, 

o<4< 
7=2 y 

for it = 2:3,..'.,/ , ~ » , ... , « 

with the sum replaced by zero for k-2. This accounts for the upper boundaries \hk\ m (30). 
Now, because i0 > 0, (//') implies a lower bound for il, the index of the last sum, viz 

h> ^-^-Sa-iyyl/c-1) 
y=2 y 

with the ceiling function ["-"I- In any case /z > 0; therefore, the lower boundary for the ix -sum is ax 

as given in (31). All restrictions have then been solved and the lower boundaries of the other 
sums are given by ak - 0 for k = 2 , . . . , / - 1 . As to the combinatorial factor, it now depends only 
on n, /, {ij}l

2 and is written as (n, /, {ij}2) • It counts the number of possibilities for the occurrence 
of the considered term of the sum which is given by 

mH"-T')AH-t'' 
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Inserting /0 and ix from (//') and (/'), respectively, remembering (//), produces {nj,{ij}l
2) as 

given in (32). Finally, Z<w,/, {ij)l
2)C^Q ->Q is transformed into ( /-I) nested sums with 

boundaries ak and [bkJ after replacement of ix and /0. This completes the proof of (29) for the 
nontrivial / > 2 cases. • 

Corollary 1-Catalan convolutions: For Catalan's sequence {C„}J, the nth convolution sequence 
for n G N is given by C0(n) = 1, Q(») = n and, for / = 2,3,..., by 

( i IAJY i (ri 

\k=2 ik=ak) J=2 v'A 
(35) Q(») = 

with (30), (31), and (32). 

Proof: This is Lemma 1 with CQ = 1 = Cv • 

Example 1: C4(3) = 3C4 + 5C3 + 3C| + 3C2 = 90. 

Corollary 2: With the Catalan generating function c(x) and the definition, one has, for n e N, 
c-"(x) =: Sr=0 QC-H)^, for / = 2,3,..., 

'niHT-N^n^1. (36> ci(-/i)=(-iy " 

with (30), (31), (32), and Catalan numbers Ck. In addition, CQ(-n) = 1, Cx(-n) = -n. 

Proof: Lemma 1 is used for powers of c(x) replaced by those of c~l(x) = 1- xc{x), with the 
Catalan generating function c{x). Hence, c~\x) - T^=o Q(~~l)x* w^h 

[I for£ = 0, 
QC"1) = I n n 7 , 0 T h e n , m Lemma 1, Ck is replaced by Q ( - l ) . D [-Q.j for A = 1,2,.... 

Example 2: C4(-3) = -3C3 + 6C2 - 3 + 3 = -3. 

Convolutions of Catalan's sequence have been encountered in various contexts, for example, 
in the enumeration of nonintersecting path pairs on a square lattice (see [12], [18], [5]), and in the 
problem of inverting triangular matrices with Pascal triangle entries (see [6] and earlier works 
cited there; they also appear in [15], p. 148). 

Note 4: Shapiro's Catalan triangle has entries 

3 u = ! ( „ ? * ) forn>k>\, and B„,*=[*"](****(*)), 

with [xn]f(x) denoting the coefficient of xn in the expansion of f(x) around x - 0. In this case, 
c(x) = (c(x)-l)/x = c2(x). (See [12], Propositions (2.1) and (3.3), with ij eN,/?ctfN0.) In [18] 
this triangle of numbers from [12] reappears as h(n, k), and it is shown there that Bn k = b(n, k) = 
[xn](xc2(x))k, in accordance with the identity c(x) - c2(x). Therefore, only even powers of c(x) 
appear in Shapiro's Catalan triangle. In [5], Q(/?) appears as special case 2^2-n,i+v ^n t^I all 
powers of c(x) show up as convolutions for the special case of the Sx sequence there. The 
entries of the Sx -array ([6], p. 397) are [xn]ck+l(x) for w , i e N 0 . 
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The anonymous referee of this paper noticed that the inverse of the lower triangular matrix 
sn,k =[xk]$n(x), for n,k e N 0 , with Chebyshev's Sn(x) = Un(x/2) polynomials is the lower tri-
angular convolution matrix obtained from its first (k = 0) column sequence generated by c(x2) 
(Catalan numbers alternating with zeros). This follows from the fact that the S-matrix is also a 
lower triangular convolution matrix with generating function l / ( l + x2) of its first column. See 
[13] for such type of matrices M and the relation between the generating functions of the first 
columns of M and M"1. The head of this Catalan triangle can be viewed under number A053121 
in the on-line database [14]. See also [6] for inverses of Pascal-type arrays. 

Lemma 2—Explicit form of Catalan convolutions [12], [18], [6], [4], [11], and [5]: 
For « G R , / eN0: 

n , x n(21 + n-l\ n (n + 2f\ n (2l + n-l\ ^^ 
Cl(n) = j[ ,_! J = ̂  j ) = -n^[ / J- (37) 

Proof: Three equivalent expressions have been given for convenience. See [4], page 201, 
equation (5.60), with %2(z) - c(z)> t—>2,k->l,r->n. The proof of (5.60) appears as (7.69) 
on page 349 of [4], with m = 2, n = I e R. 

The same formula occurs as Exercise 213 in Vol. 1 of [11] for p = 2 as a special instance of 
Exercises 211 and 212. Put a = n and n-l in the solution of Exercise 213 on page 301. 

In order to prove this lemma from [12] or [18], one can use 
min(/, ri) s \ 

obtained from c(x) =: l+c(x) with 

k=n 

The result in [12] and [18] is, with this notation, 

Cl(j) = Bu = Ki,j) = j[i2!J). 

Inserting this in the given sum, making use of the identity j(nj) = n("z\) and the Vandermonde 
convolution identity, leads to Lemma 2 at least for positive integer n, but one can continue this 
formula to real (or complex) n. 

In [6], one finds this result as equation (3.1), page 402, for i = 1: sx{l, ri) = Ct(n). 
In [5], 2^2-11,1+1 - Q(w)> w ^ n t n e result given in Theorem 2.3, equation (2.6), page 71. • 

Note 5* As a side remark we mention that, from (37), Et(x) :=/!Q(x) (with real n = x) is a 
polynomial of degree /, viz Ul~}Q(x + l + l±j). These polynomials, which are not the subject of 
this work, are known (see [8] and references given there) as exponential convolution polynomials 
satisfying Et (x + y) = Z L 0 ( D ^ W £ / ^ O ) -

We now compute the coefficients Q(w) = [xl]cn(x) (see Note 4 for this notation) from our 
formula given in Proposition 1. This can be done for n e Z. 

First, consider / ?GN 0 . For n = 0 and n = 1, there is nothing new due to the inputs S_2 = - 1 , 
S__x = 0, and S0 - 1. Cl(n) = 0 for negative integer /. Therefore, terms proportional to l/xl with 
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/ e N have to cancel in (23), or in (1). For w = 2,3,..., terms of the type l/xn~J occur for j e 
{l,2,...,[fj}. The coefficient of l/xn-J in p„^(x) is (- lyC^V) (see Note 1 for the explicit 
form of /Vi)- F o r ^ e 1/x""7 coefficient in ^ ( ^ M * ) , one finds the convolution 

Compensation of both coefficients leads to identity (PI) given in (4) after (j'-1) has been traded 
for p. Thus, after a shift n -> /? + 2, 

Proposition 2-Identify (PI): For TI <EN0 and /? = 0,1,...,[fJ, identity (PI), given in equation (4), 
holds. 

Example 3: n = 2(k -1), p - k - 1 , and n = 2* - 1 , p = A - 1 for & e N; 

e.g., A = 3: 3C0 - 4 Q + 1C2 = 1, 6C0-5Q + 1Q - 3 . 

For w = 2,3,..., terms in (1), or in (23), proportional to x* with & GN 0 arise only from 
qn-\{x)c{x)y and they are given by the convolution (cf. Note 1), 

For n - 1, this is Ck. The left-hand side of (1) contributes Ck(n), and Q(l) = Q . Therefore, 

Proposition 3-Identity (P3): For « E N , & eN0, identity (P2), given in equation (5) with (3) 
holds. 

Example4: k = 0, («-l)—»/i: 

S(-0,+1(w7/)clM = (;-i; 
e.g., 7i = 3 : 2 C 2 = C 3 - l , #i = 4: 3C3-1C2 = C 4 - 1 . 

Now consider negative powers in (1), i.e., c~n{x\ n G N . NO negative powers of x appear 
(cf. Note 1 for the explicit form of p_^n+V)(x) and q_^n+r){x)). The coefficient of xk, k e N0, of 
the right-hand side of (1) is 

where the first term, arising from p^„+\)(x)9 contributes only for k e {0,1, ...,[f J}- ^n the subo-
rnation, one also needs l<k-l because no Catalan numbers with negative index occur in (1). 
The left-hand side of (1) has [xk]c~n(x) = Ck(-n). From the last equation in (37), one finds 
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In the last equation, the upper index in the binomial has been negated (cf. [4], (5.14)). Two sets 
of identities follow, depending on the range ofl. 

Proposition 4-Identity (P3): For n G N , k e {0,.1, ...,|_f j}3 identity (P3), given in equation (6), 
holds. 

Example 5; k = 3, n > 6: C2 - (n - 2)Q + (n
2
3)CQ = ( V ) • 

Proposition 5-Identity (P4): For n G N , i e N , with k > j_f ] + l, identity (P4), given in equa-
tion (7), holds. 

In (P4), only the q-(n+i)(x)c(x) part of (1) contributed, and we used the first expression for 
Ck(-n) in (37). In (P3), where p^n^{x) also contributed, we used the negated binomial coeffi-
cient for Ct(-n) and absorption in the resulting one. 

Note that (37) implies Ck(-n) = -Ck_n(n) for k, n e N, k > n, and Q(0) = Sk0. 
Example 6: n = 5, k > 3: 

Q~i ~ 3Ck-2+Q-3 = ̂ ( ^ _ i y 
e.g., * = 7: C 6 -3Q + C4 = 20. 

If one uses the binomial formula for c~n(x) = (l-xc(x))n wad cn(x) = T^=0Ck(n)xk, one 
arrives at equation (8). 

3. SOME FAMILIES OF INTEGER SEQUENCES 

In this section we present some sequences of positive integers which are defined with the help 
of the Un polynomials (10). 

un(m)^Un(\lm) = (4m)"Sn(4m). (38) 

The last equation is due to (21). It will be shown that un(m) is a nonnegative integer for each 
m = 4, 5,... and n - -1,0,.... Also negative integers -m, W G N are of interest. In this case, we 
add a sign factor: 

v » := {-\)"Un{-\lm) = {-i^)"Sn(iM- (39) 
From the S„ recursion relation (15), one infers those for the un(m) and vn(m) sequences: 

un(m) = in(un_l(m)-un_2(m))9 u^Qn) = 0, u0(m) = 1; (40) 

vn(m) = m(vn_1(m) + vn_2(m)l v_x(m) s0 , vQ(m) = 1. (41) 

This shows that vn(m) constitutes a nonnegative integer sequence for positive integer m. It 
describes certain generalized Fibonacci sequences (see, e.g., [7] with vn(m) = Wn+1(0, l;m, m)). 
For example, vn(m) counts the length of the binary word W(m; n) obtained at step n from the sub-
stitution rule 1-»1W0, 0->lm, starting at step w = 0 with 0. The number of l's, resp. 0's, in 
W(m;n) is wv^/w), resp. mvn_2{m). E.g., W(2;3) = (110)212(110)212 and v3(2) = 16, 2v2(2) = 12, 
and 2vx (2) = 4. For m - 1, this substitution rule produces the well-known Fibonacci-tree. Of 
course, one can define in a similar manner generalized Lucas sequences using the polynomials 
{Vn} given in (11). Each un{m) sequence (which is identified with Wn+1(0, l;m9-m) of [7]) turns 

2000] 417 



ON POLYNOMIALS RELATED TO POWERS OF THE GENERATING FUNCTION OF CATALAN'S NUMBERS 

out to be composed of two simpler sequences, viz u2k(m)-.mkak(m) and u2k_l(m) =: mkfik(m), 
k G N 0 . These new sequences, which are due to (38), given by ak = S2k{4m) and f3k{m)~ 
S2k-\{slfn) 14m, satisfy therefore the following relations: 

Pk+l(m) = (m- 2)[3k(m) - fik^(m)9 f3Q{m) - 0, fix{m) = 1, (42) 
and 

ak-i(m) = Mm) + Pk-i(m)- (43) 
From (42) it is now clear that Pn(m) is a nonnegative integer sequence for m- 4, 5,.... (In [7], 
Pn(m) = Wn (0,1; m- 2, -1).) This property is then inherited by the an(m) sequences due to (43), 
and then by the composed sequence un(m). 

The ordinary generating functions are: 

^ ; * ) : = | / ^ ) * " % 2 _ { m
X _ 1 ) x + r sArn;xy. = gaM)X" = x2_(l+_\)x + v (44) 

OO -j 00 -j 

gu(m;x):=J^un(m)xn = • j9 gv(m; x):= X V « ( ^ K = ~, J- (45) 
%r0 l-inx + mxz ££ l-mx-mx1 

Note 6: The \J3n{m)} sequences for rn - 4,5,6, 7,8,10 appear in the book [14]. The case rn = 4 
produces the sequence of nonnegative integers; m = 5 are the even-indexed Fibonacci numbers. 
The m- 9 sequence appears in Sloane's "On-Line-Encyclopedia" [14] as A004187. The {an(m)} 
sequences for m - 4,5, 6, 8 also appear in the book [14]. The case m - 4 yields the positive odd 
integer sequence; m - 5 is the odd-indexed Lucas number sequence. The rn - 1 sequence appears 
in the database [14] as A03022L The composed sequences {un{m)} do not appear in the book 
[14], but some of them are found in the database [14]. m = 4 is the sequence (« + 1)2W, A001787, 
and m = 5,6,7 appear as A030191, A030192, and A030140, respectively. As mentioned above, 
{vw_i(l)} is the Fibonacci sequence. The instances m = 2 and 3 appear as A002605 and A030195, 
respectively, in the database [14]. 
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