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1. INTRODUCTION 

Let a0, a1?..., ar_x (r > 2) be some real or complex numbers with ar_x ̂ 0 . An r-generalized 
Fibonacci sequence {Vn}n>0 is defined by the linear recurrence relation of order r, 

K+i=^n^aiK-i + '"+ar-iK-r+i forn>r-l, (1) 
where VQ,Vl9 ...9Vr_x are specified by the initial conditions. Such sequences are widely studied in 
the literature (see, e.g., [5], [6], [9], [10], [11], and [13]). We shall refer to them in the sequel as 
sequences (1). It is well known that, if the limit q = lim^+^^r1- exists, then q is a root of the 
characteristic equation xr = a0xr~l + • • • +ar_2x+ar_x. Hence, sequences (1) may also be used as a 
tool in the approximation of roots of algebraic equations (see [12]), like Newton's method or the 
secant method as it was considered in [7]. 

The Aitken acceleration {x*}n>0 associated with a convergent sequence {xn}n>Q is defined by 
2 

v* — Xn+lXn ~ %n o \ 
n~ x -2x +x ' K } 

xn+l AXn ^ xn-l 
For numerical analysis, this process is of practical interest in those cases in which {#*}«>o c o n° 
verges faster than {xn}n>0 to the same limit (see, e.g., [1], [2], [3], [4], and [8]). In the case of 
sequences (1) with r = 2, McCabe and Philips had considered a theoretical application of Aitken 
acceleration for the accelerability of convergence of {x„}n>0, where xn =^y± (see [12]). This is 
nothing more than the application of Aitken acceleration to the solution of the quadratic equation 
x2 - a0x - ax - 0 by an iterative method (see [12]). 

The main purpose of this paper is to apply the method of the e-algorithm (see [3], [4]), which 
generalizes the Aitken acceleration, to accelerate the convergence of {xn)n>0, where xn = ^-^ for 
any sequence (1). Hence, we extend the idea of McCabe and Philips [12] to the general case of 
sequences (1). Thus, we get the acceleration of the solution of algebraic equations. 

This paper is organized as follows. In Section 2 we give a preliminary connection between 
sequences (1) and the g-algorithm. In Section 3 we apply the s-algorithm to the sequence of the 
ratios xn = ^y±. Some concluding remarks are given in Section 4. 

2. SEQUENCES (1) AND THE e-ALGORITHM 

Let {xn}n>Q be a convergent sequence of real numbers with x = lim^ )l00 xn. The s-algorithm 
is a particular case of the extrapolation method (see [2], [3], [4]). The main idea is to consider a 
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sequence transformation T of {xn}n>0 into a sequence {Tn}n>0, which converges very quickly to 
the same limit x, this means that l i m ^ ^ J ^ t = 0 (see [3] and [4] for more details). The kernel of 
the transformation 7, defined by 

%T = {{xH}nM3N>0,Z = x,Vn>N}, 

is of great interest for an extrapolation method like Richardson or e-algorithm (see [3], [4]). In 
summary, the s-algorithm associated with the convergent sequence {x„}„>0 consists in considering 
the following sequence {s^)k>-i,n^0' where 

s^ = 0,s["^xn,n>0, (3) 

« & = «& + ^ D 1
 p{nyn,k>0. (4) 

bk ~bk 

This algorithm can be applied when s^ ^ s^+V) for any n, k. The s-algorithm theory also shows 
that the only interesting quantities are s^, the quantities s^k+i a r e usec^ onty f°r intermediate 
computations (see [2], [3], [4]). For k = 2, we can derive from expressions (3) and (4) that s^ 
is nothing but the Aitken acceleration associated with {xn}n>0 as defined by (2) (see [3], [4]). 

For any convergent sequence {xw}„>0 with x = limn_^+O0xn, Theorem 35 of [3] and Theorem 
2.18 of [4] show that there exists N > 0 such that £%$ = x for any n > N if and only if there exists 
a0,...,ak with Zy=0 «/ * 0 such that Zy=0

 aj(x
n+j - *) = 0 for any n>N. It is easy to see that we 

can suppose in the last preceding sum that a0 * 0 and ak ^ 0 . Hence, we derive the following 
property. 
Proposition 2.1: Let {xn}n>0 be a convergent sequence such that x - lim^ >l00 xn. Then the fol-
lowing are equivalent: 
(a) There exists N > 0 such that e^ = x for any n > N. 
(h) The sequence {Vn}n>0 defined by Vn = xn+N-x is a sequence (1) corresponding to r = k, 
whose coefficients and initial conditions are, respectively, 

^ = ~^>"-'^-i = ~ 3 L a n d Vo = xN-x>->Vk-i = xN+k-i-x-
ak ak 

(c) The sequence {x„}n>N is a sequence (1) corresponding to r = k +1 such that X = 1 is a simple 
characteristic root, V0 = xN,...,Vk= xN+k are its conditions, and its coefficients a0,...,ak are the 
coefficients of the characteristic polynomial P(X) - (X-l)Q(X), where Q(X) is the character-
istic polynomial of {Vn}„>0 defined in (b). 

Proposition 2.1 shows that, in the case of the s-algorithm, the kernel %T may be expressed 
using sequences (1). 

3. APPLICATION OF THE e-ALGORITHM TO l i m ^ ^ %*± 

Let {Vn}n>0 be a sequence (1) and 20,..., A; be the roots of the characteristic polynomial 
P(X) = Xr - a0Xr~l ar_x. Suppose that 2 0 is a simple root and 

0<|A/ |< |A/_1 |<- . .< |A1 |< |10 | . 
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Thus, the Binet formula of the sequence (1) is 

A" 

where the fijs are given by the initial conditions and Sj is the multiplicity of Xj (0 < j < /) (see, 
e.g., [9] and [10]). Suppose that VQ,...,Vrmml are such that pm^0. Then we can derive that 

It is known that if we applied the Aitken acceleration process to a convergent sequence 
R}*>o w i * x = timn^cc>xn and if l i m „ ^ ^ ^ = p * l , then the sequence {4°}«>o converges 
more quickly than {xn}n>0 to x (see [3], Theorem 32, p. 37). In the case of xn = ̂ y±, a direct 
computation using the Binet formula results in 

lim *»*-*>* =h*\ 

because \XX\ < |20 | . Hence, we have derived the following property. 

Proposition 3.1: Let {Vn}n>0 be a sequence (1). Suppose that the characteristic roots {Xj}l
J=0 are 

such that 0 < |yL/| < |AW| < ••• < \XX\ < \X0\ with XQ simple. Apply the Aitken acceleration to 

x =£* 
vn Jn>0 

Then, the sequence {4w)}«>o converges faster than {xn}n>0 to A0. 

Let {xn}n>0 be a convergent sequence with x - limy; >[00 xn. If x„ = f(xn_ly..., xn_k), where 
x0,..., xk_x are given and 

X|£(x,...,*)*!, 
/=0 uJi 

then l i m ^ ^ s$> = x (see [3], Theorem 52, p. 70). L e t / b e the function / : D c R M ^ R , 
where D = {(y1,...,yr_l) e R1"1; J,- *0, V/ ( l < y < r - l ) } , defined by 

Consider the ratio xn = ̂ r1. Then, from expression (1), we derive that xn = f(xn_ly..., xn_r+l). It 
is clear that/ is a class C1 on ©. By direct computation we obtain 

g — (;i0,...,A0) = l - ^ — ( A 0 ) . 

Then we have derived the following result. 

Proposition 3.2: Let {Vn}n>0 be a sequence (1). Suppose that the characteristic roots {/l;}y=0 

are such that X0 is simple and 0 < |A7| < |/LM| < • •< \XX\ < \A0\. Apply the s-algorithm to the 
sequence [xn = Y^]n^ Then we have l i m ^ ^ 4#-i) = A0. 

24 [FEB. 



APPLICATION OF THE -̂ALGORITHM TO THE RATIOS OF r-GENERALIZED FIBONACCI SEQUENCES 

More precisely, we have the following result. 

Proposition 3.3: Let {Vn}n>0 be a sequence (1). Suppose that the characteristic roots {Xj}l
J=0 

are such that X0 is simple and 0 < 11,1 < | A M | < ••• < \Xt\ < \X0\. Apply the e-algorithm to the 
sequence [xn = i^-}n>Q. Then the sequence {4"r-i)}w>o converges faster than {^w+r_i}w>0 to A 0 . 

Proof: Let bj = -§fr (A 0 , . . . , A0). Then there exists hf (1 < j < r -1) such that 

(4(U - ^ f - l + Z ^ l = f,^ -h^x^-A,)-^ (*) 
V ;=i J J=i 

where 
^ = (xn ~ ̂ o) " *i(**-i" ^o) " '" •" U V r + i " xol (**) 

The application (x„_r+1,..., jcw+r-1) -> (fl^,..., h^) is continuous (see [3] and [4]). Hence, for any 
8 > 0, there exists N > 0 such that |ijw) - fy,| < s for any w > N with y = 1,..., r -1. Then, from 
(*), we derive that 

Km- * % - D - A 0 = 1 . l i m 4. . 
»-»-h*> Xn+r_t ~XQ - 1 + ^ &y »-M<o X^.^! - AQ 

From expression (**) of i^, we obtain that 

i im -̂  = r v r _ j / ^ j 1 - ir_x I ^ 

A direct: computation using the expression 

results in lim,,^^ Xn+^-x0 = °- Thus, we have 

A n An A/i 

lim g ^ > 7 = 0. D 

The proof of Proposition 3.3 is nothing more than an adaptation of the proof of Theorem 52 
of [3] to the case in which 

/ ( % , . . . ^ r ) = flb+5L + - 2 L + . . . + _ 3 t L _ . 

4. CONCLUDING REMARKS 

Note that the e-algorithm may also be used to accelerate the convergence of sequences (1). 
More precisely, for a convergent sequence (1), the Binet formula results in |/L;| < 1 for any char-
acteristic root Xj (0<j<I). Suppose that 0 < \XX\ <••• < \XX\ < \X0\ < 1. Then the Binet formula 
and expression (1) imply that lim^^^F^ = 0 for \Xj\ < 1 for anyy or lim^^^F^ = fi00 if \Xj\ < 1 
for any j'& 0, and A 0 = 1 is a simple characteristic root. 
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For lim^+^F^ = 0, we show by direct computation that l i m ^ ^ ^ 1 - = Aj9 depending on the 
choice of the initial conditions {^}^V Then, by applying the e-algorithm, we can derive that 
(4p}«>o converges to 0 faster than {VJn>0, for any p = 1,..., r - j . 

For lim^ )|00Vn = J300 = £ * 0, we can derive by direct computation that lim,,^^Vy*~$ = A>j9 

depending on the choice of the initial conditions {f*}£j). Then, by applying the s-algorithm, we 
also derive that {s^}n>0 converges to Sfaster than {Vn}n>0 for any p = l,...,r-j. In particular, 
this case may be used to accelerate the convergence of the ratios -p- when the ay- are nonnegative 
and CGD{j +1; a, > 0} = 1 (see [6] and [14]). 
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