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1. INTRODUCTION 

The notion of an oo-generalized Fibonacci sequence has been introduced and studied in [8], 
[9], and [11]. In fact, such a notion goes back to Euler. In his book [4], he discusses Bernoulli's 
method of using linear recurrences to approximate roots of (mainly polynomial) equations. At the 
very end, in Article 355 [4, p. 301], there is a brief example of the use of an oo-generalized 
Fibonacci sequence for the approximation of a root of a power series equation.* 

The class of sequences defined by linear recurrences of infinite order is an extension of the 
class of ordinary r-generalized Fibonacci sequences (r-GFS, for short) with r finite defined by 
linear recurrences of r^ order (for example, see [1], [2], [3], [6], [7], [10], etc.). More precisely, 
let {(*J}J>Q and {a -}7.>0 be two sequences of real or complex numbers, where Gj ^ 0 for somej. 
The former is called the coefficient sequence and the latter the initial sequence. The associated 
co-generalized Fibonacci sequence (oo-GFS, for short) {Vn}n€Z is defined as follows: 

Vn = a„ (n<0), (1.1) 

Vn-%Fn-j-x (**!)•• 0-2) 

As is easily observed, the general terms Vn may not necessarily exist. In [8], a sufficient condition 
for the existence of the general terms has been given. 

In this paper, we first give a necessary and sufficient condition for the existence of the general 
terms Vn (n>l) of an oo-GFS (see Section 2). We will see that the condition in [8] satisfies our 
condition, but not vice versa. We then consider a process of approximating a given oo-GFS by a 
sequence of r-GFS's, where r < oo varies (see Section 3). As is well known, there is a Binet-type 

* The authors would like to thank the referee for kindly pointing out Euler's work. 
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formula for the general terms of an r-GFS (for example, see Theorem 1 in [3]). In Section 4, we 
use such a formula together with the approximation result in Section 3 to obtain an asymptotic 
Binet formula for an oo-GFS. In Section 5, we study the asymptotic behavior of oo-GFS's using 
the results in'the previous, sections. In Section 6, we concentrate on the case in which a. > 0 and 
obtain some sharp results about the asymptotic behavior of oo-GFS's. Finally, in Section 7, we 
give an explicit example of our main theorem of Section 6. 

2* EXISTENCE OF GENERAL TERMS 

Let {aj}j>Q and {CC_J}J>0 be as in Section 1 and {Vn}nEZ be the associated QO-GFS defined by 
(1.1) and (1.2). Equation (1.2) can be rewritten as follows: 

«-2 oo rt-2 oo 
Vn = HajVn-J-l + YajK-j-l = £ * / " - / - ! + X>/-H,-l<*-/ • (2.1) 

/=0 y=n-l ;=0 /=0 

Then it is easy to see that we have the following necessary and sufficient condition for the exist-
ence of the general terms Vn (n > 1). 

Proposition 2.1: The genera! term Vn exists for all n>\ if and only if the following condition 
(Q,) is satisfied. 

(Q,): The series E7=0
 aj+n-\a-j converges for all n > 1. 

Condition (Q,) is trivially satisfied in the case of an r-GFS with r finite, since ctj = 0 for all 
j>r. 

Remark 2.2: As particular cases of Proposition 2.1, we can easily prove the following. 
(a) If the series EJ=0 oc_j converges absolutely and the sequence {^l^o *s bounded, then Vn 

exists for all n>\. 
(b) If the series Zy=oay converges absolutely and the sequence {a_j}j^0 is bounded, then Vn 

exists for all n > 1. 
For another existence result, see Lemma 6.6. Compare Remark 2.2 with Section 2.1 in [11]. 
Now let us compare our condition (Cro) with the sufficient condition considered in [8] for 

the existence of the genera! terms Vn (w>l). Let h{z) be the power series defined by h(z) = 
J^=QGjZJ. The conditions considered in [8] are the following. 

(CI): The radius of convergence R of the power series h(z) is positive. 
(C2): There exist C> 0 and T> 0 with 0<T<R satisfying |a„y | < CP for all j > 0. 

It was established in [8] that, if conditions (CI) and (C2) are satisfied, then the general term Vn of 
the associated oo-GFS exists for all « > 1. 

It is easy to see that, if conditions (CI) and (C2) are satisfied, then (Q,) is also satisfied. On 
the other hand, the examples a. = (] + ^)~3? a-j = j> m^ aj = (J + ^)~\ a-j = (-l)J both satisfy 
condition (CI), but not (C2), while (C^) is satisfied in both cases. Therefore, condition (Cw) is 
strictly weaker than (CI) and (C2). 
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3. APPROXIMATION BY r-GFS's WITH r FINITE 
Let {cij}j>o and {a_j}j>0 be sequences of complex numbers as before. For each r >1, let 

{F„(r)}„>_r+1 be the r-GFS defined as follows: 

VP = an (n = -r + l,-r + 2,...,0), (3.1) 

^ r ) = Z " / # - i in>\). (3.2) 

Note that here we allow the case where ar_x = 0, while ar_x ̂  0 is assumed in [3]. 
In this section, we prove the following approximation theorem. 

Theorem 3.1: The general term Vn exists for all n> 1 if and only if the sequence {V^}r>l con-
verges for all n > 1. Furthermore, in this case, for all n > 1, we have 

Vn = XxmV". (3.3) 
r-»oo 

Proof: We prove, by induction on k, that the terms Vx,...,Vk exist if and only if, for all n with 
1 < n < k, the sequence {V^}r>l converges and (3.3) holds. When k = 1, we have 

Vi = taja-j a n d Vi(r) = rfaja-j 

for all r > 1. Thus, Fj exists if and only if the sequence {F1
(r)}r>1 converges. Furthermore, in this 

case, we have Vx = limr_^00F1
(r). 

Now suppose £ > 2 and that the induction hypothesis holds for k -1. For r > &, we have 
Jfc-2 oo 

Vk = X * /w- i + Z a/**-/-i 
and 

Then, by our induction hypothesis, we see that the sequence {J^(r)}r>i converges for all n with 
\<n<k if and only if the terms Vh...,Vk exist. Furthermore, in this case, using our induction 
hypothesis, we see that (3.3) holds for n = k by sending r —» oo in (3.4). D 

4. ASYMPTOTIC BINET FORMULA 

Let {dj}j>Q and {GC-J}J>0 be sequences of complex numbers. For each r >1, consider the 
polynomial Qr{z) defined by 

a(*)=i-£V+1- (4.i) 
Note that the characteristic polynomial Pr(z) of the r-GFS {F„(r)}„>_r+1 defined by (3.1) and (3.2) 
is given by 

Pr(z) = zrQr{z~l), (4.2) 
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which Is a polynomial of degree r. Let &[),...>2iQr) be the complex roots of Pr(z), whose respec-
tive multiplicities are n%r\...,m$.y Note that m{r) + — +m$>r) =r . The classical Binet-type 
formula for the r-GFS {J7„(r)}„>_r+1 is given by the following: 

«(r) n£k)-\ 

Kr) = I, TtiWWr, (4.3) 
k=l j=0 

where the complex numbers / ^ are determined by the initial sequence {&:_,• }0<7<r-i (e-§-> s e e t5, 
Theorem 3.7]; [3, Theorem 1]). 

Remark 4.1: In [5] and [3] it is assumed that ar_x 5*0. When this condition is not satisfied, the 
polynomial Qr{z) m&y n^t necessarily be of degree r. On the other hand, the characteristic poly-
nomial Pr(z) is always of degree r, which may have zero as a root of some multiplicity. Hence, 
the above Binet-type formula (4.3) holds even if ar_x - 0. 

By Proposition 2.1, Theorem 3.1, and (4.3), we have the following asymptotic Binet formula. 
Theorem 4.2: If condition (QJ is satisfied, then we have, for all n > 1, 

u{r) 4 r ) - i 

Compare the above results with Problem 4.5 in [8]. 

Example 43: Consider the oo-GFS {Vn}neZ associated with the coefficient sequence a- = -yJ+l 

and the initial sequence a_} - S0J (J > 0), where y is a nonzero complex number, S0j = 0 if 
j * 0, and 50Q = 1. Note that condition (C^) is. trivially satisfied. By a straightforward calcula-
tion, we see that 

[0 (n * 0,1), 
Vn = \l (/i = 0), (4.5) 

[-r (n = l). 
On the other hand, we have Pr(z) = zr + yzr~l + • • • + ̂ r_1z 4-^r. Thus, all the roots are simple and 
they are of the form X{£ = y£?r+l (A = 1,2,..., r) for a primitive (r + l)st root £r+1 of unity. Then 
we have* 

t,fii%(.4yr = S0n (-r + l<»<0). (4.6) 

We multiply each of the equations of (4.6) by y~n and sum them up for 'n - -r +1,..., 0. Then we 
obtain 

Z^ 0 (4 r ) r = -r-% (4.7) 
jfc=i 

since 

i(4r))"r-" = -(4r)rrr-

* Using (4.6), we can obtain explicit values of flfy, although we do not need them here. 
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By successively multiplying (4.6) and (4.7) by yr+1 = 0p)r+l, we see that 

fO, w^0,l (mod r + 1), 
V^ = l yn

y w = 0 (mod r + 1), (4.8) 
-yn, n^l (mod r +1), 

by (4.3). Hence, we have limr_>00 F„(r) = Vn in view of (4.5). 

5. ASYMPTOTIC BEHAVIOR OF oo-GFSfs 

Let {dj}j>o and {CC-J}J>O be sequences of complex numbers. For each r>l, consider the 
characteristic polynomial Pr(z) of the r-GFS {Vn

(r)}n>_r+l as in (4.2). Let r0 > 1 be an integer such 
that arQ_i ^ 0 and let us assume that, for each r > r0, there exists a nonzero dominant root qr of 
Pr(z) with dominant multiplicity 1 (for these terminologies, refer to Section 3 in [3]). In [3], it 
has been shown that Lr = hmn_>aoV^/q" exists and its explicit value has been obtained in terms 
of qr together with the coefficient and the initial sequences. 

Let us assume that the sequence {qr}r>rQ converges to a nonzero complex number q. If one 
looks at Theorem 4.2, then it might seem easy to obtain a convergence result for the sequence 
{Vn/qn}n>l. However, since equation (4.4) is given by the limit for r -> oo, we have to be careful 
with the relationship between the convergence with respect to r and that with respect to n. For 
this reason, we need the following definition. 

Definition 5.1: Let {4r)}„>no?r>^) be a doubly-indexed sequence of real or complex numbers. We 
say that the sequences {x^r)}n>^ are uniformly convergent for r>r0 if there exists a sequence 
{Lr}r>r0 of real or complex numbers such that, for every s >0, there exists an N>n0 satisfying 
\x^ -Lr\< s for all n>N and all r>r0. It is easy to see that in this case, if the sequence 
{j4r)}r>ro converges to xn for each n > /^, and if L = limr^00 Lr exists, then lim^^^ xn exists and 
is equal to L. 

Then, combining the results of [3], Theorem 3.1 of the present paper, and the above defini-
tion, we obtain the following (for an explicit example, see Section 7). 

Theorem 5.2: Suppose that 
(a) Pr(z) has a nonzero dominant root qr of dominant multiplicity 1 for each r > r0, 
(h) q- lim,.^^ qr exists and is nonzero, 
(c) the general term Vn exists for all n > 1, 
(d) the sequences {4r)}/i>o = {^(r)/$r}«>o are uniformly convergent for r>rQ with Lr = 

l i m w ^ ^ ) / ^ , a n d 
(e) L = limr_>00 Lr exists. 

Then the limit l im^^ Vnlqn exists and is equal to L. 

Proof: By Theorem 3.1 and our assumptions, we have Vnlqn =limr_^c0F„(rVg^ for each 
n > 1. Then, by the observation given in Definition 5.1 together with our assumptions, we have 
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Remark S3: As In the above theorem, let us assume (a)-(c) and, instead of (d) and (e), let us 
assume that L = lim^r^O0x<f'> exists, where we write H m ^ ^ x ^ = L if, for every e>0, there 
exists an N > r0 such that \x^-L\<s for all w, r > N. Then we have 

L=lim-a-=limZr. (5.1) 

The following lemma is easy to prove. 

Lemma 5.4; Let {y^}„>n^r>rQ be a doubly-indexed sequence of real or complex numbers such 
that, for every n > w0, limr^00 y(

n
r) = yn exists and lim^^ yn = y exists. Then, for every n > «0, 

there exists an r(n)>rQ such that r(ri)<r(n + l) for all n>nQ and that the sequence {yir(n^}n>n 

converges to y. 
Let us assume conditions (a)-(c) of Theorem 5.2 and, for n > 1 and r>rQ, set y^ = VnIqn -

VPIq1}. Then, for every n > 1, we have l i m ^ ^ j ^ = yn = 0. Then l im^^ yn = 0 trivially exists. 
Thus, Lemma 5.4 implies that, for every n>l, there exists an r(n)>r0 such that r(l)<r(2)< 
r(3) < • • • and lim^*, ̂ r(77)) = 0. Therefore, we have the following theorem. 

Theorem 5«5: Suppose that 
(a) Pr(z) has a nonzero dominant root qr of dominant multiplicity 1 for each r > r0, 
(b) q- limr_>00 qr exists and is nonzero, and 
(c) the general term Vn exists for all n > 1. 

Then Z, = l im^^ Vn iqn exists if and only if l im^^ V^^Iq^ exists. Furthermore, in this case, 
we have 

Z = l i m - ^ = l i m ^ . (5.2) 
~^q* »->«o qn{n) 
n-*oo * 

In (5.1) and (5.2), we did not give the limiting value L explicitly. In the following section, we 
determine the explicit value in the case where a7- are nonnegative real numbers. 

6S THE CASE OF NONNEGATIVE COEFFICIENTS 

In this section, we assume that all the coefficients a} are nonnegative real numbers and 
consider the same problem as in the previous section. We use the same notations. 

It is not difficult to see that, for each r > r0, there always exists a unique real number qr > 0 
such that Pr(qr) = Qr(q7l) = 0 (for example, see Lemma 2 in [2], Lemma 8 in [3], and Section 12 
in [12]), where Q. is the polynomial defined by (4.1). Set pr = q~l. Define the power series Q(z) 
by Q(z) = 1 - zh(z) = 1 - X7=o QjZJ'+l and let R be the radius of convergence of Q(z), which coin-
cides with that of h(z). The following will be proved later in this section. 

Theorem 6.1: The sequence {qrl}r>r0 = iPr}r>rQ always converges and the following conditions 
are equivalent: 

(a) Condition (CI) is satisfied (i.e., R>0) and iim^^QQ(x) <0. 
(b) The limiting value / = limr_>00 pr > 0 and Q(l) = 0. 
(c) There exists a unique positive real number p such that Q(p) - 0. 

Furthermore, if (c) is satisfied, then we have p = limr_ 0̂0 pr. 
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The main result of this section is the following theorem. 
Theorem 6.2: Assume that one of the three conditions of Theorem 6.1 is satisfied. Suppose that 
drx = 1 for some rx > r0, 0<p< R, and 

qJ\a.j\<K ( />0) (6.1) 

for some constant K> 0, where dri = gcd{j -hl\aJ>0,0<j<rl-l} and q = p~\ If the sequences 
{V^ lq?)n>\ are uniformly convergent for r>rXj then Vn exists for all n and we have 

A 

1 ™ ^ = ̂  "— • (6.2) 
a.j 

W-»co 

y=o 

Let us begin by proving Theorem 6.1. 

Proof of Theorem 6.1: Suppose that r0<r<rf. Then we have Qr,(pr) = -arpr
r
+l 

ar'-\Pr' -0- Furthermore, we have 2r,(/v) = 0. Since £?r,(x) *s a decreasing function on (0, oo), 
we have pr > pr,\ i.e., the sequence {pr}r>ro of positive real numbers is nonincreasing. Hence, it is 
convergent. In the following, we set / = limr^00 pr > 0. 

For every r > r0 , we have 0<l<pr. Since Qr(x) is a decreasing function on (0, oo), we have 
0 < Qr(l) < 1. On the other hand, since Qr,(l) - Qr(l) = -arlr+l ar,_£r' < 0 for r, r' > r0 with 
r <r ' , we see that the sequence {Qr{I)}r>r is nonincreasing. Thus, l im^^g^ / ) exists and is 
equal to Q(l). Furthermore, we have 

0<Q(l)<h (6.3) 

(a) => (b): First, note that since Q(l) exists we have 0<1<R. 
Suppose 0 < / < R and Q(l) > 0. Since Q(x) is a continuous function on the interval (-R, R), 

there exists a sufficiently small positive real number rj such that Q(x) > 0 for all x e (/ - % 
l+rj)a (-R, R). Since / = lim,._»«> pr, there exists an rf > r0 such that pr e [/, / + rj) for all r > r'. 
Thus, Q{pr) > 0 for all r > r'. However, since Q(pr) = - HJ=r djp/+l < 0, this is a contradiction. 
Therefore, we have Q(l) = 0. 

If / = i?, then we have 0 < Q(R) < 1 by (6.3). Thus, we have Q(R) = Q(l) = 0, since Q(R) = 
lim;c_>^_0 Q(x) < 0 by our assumption. 

Therefore, we have Q(l) = 0, and this implies that / > 0, since, if / = 0, we would have Q(l) = 
1>0. 

(b) => (c): Setting p = I, we have Q(p) = 0. The uniqueness follows from the fact that Q(x) 
is a strictly decreasing function. 

(c) => (a): Since p>0 and Q(p) - 0, we see that 0<p<R, which implies condition (Cl). 
Furthermore, since Q(x) is a decreasing function on (0,i?), we have litnx_^R_0Q(x) < Q(p) = 0. 
This completes the proof. D 

Remark 6.3: When some a, is not a nonnegative real number, there does not always exist a root 
p of Q(z). For instance, in Example 4.3 of Section 4, we have Q{z) = l/(l-yz), which never 
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takes the value zero inside the convergence range. Compare this observation with Problem 4.5 in 
[8]. 

Since qr is a root of the characteristic polynomial Pr, we have 

q r q2
r qr

r +3-+-+f£L=i- (64> 
Combining this with Theorems 3, 5, and 9 of [3], we have the following lemma. 

Lemma 6.4: For each r > r0, we have: 
(a) Lr = \imn_^o0V^/q" exists for any initial values {oc-j}o<j<r-i and is nonzero for some 

initial values if and only ifdr = l. 
(b) If there exists an rx > r0 such that dn - 1, then Lr = lim^^, V^lq" exists for all r>rx. 

Furthermore, this limit is given by 
\ r - l / r -1 

I I^*-1 a_j 

1 , = ^ ^ < — . (6.5) 

7=0 

Lemma 6.5: Assume that one of the three conditions of Theorem 6.1 is satisfied. Suppose that 
dn = l for some /"!>r0, 0<p<R, and (6.1) holds for some constant A^>0. Then, for Lr = 
lim„_>00F„(r)/#r" (r > ?i), we have 

co / co 

l i m Z ^ ^ ^ l <+oo. (6.6) 

y=o 

Proof: Set Sr(x) = Sy=o(/ + l)a/x/+1. Since 0<p = q~l<pr = q;1 for all r > r0, we have 

sr(rl) = Z(i>iHr°'+1) * Z0>iH^-°'+1) = $Ml) (6.7) 
y=o y=o 

for all r > r0. On the other hand, consider the function S defined by 

S(x) = X 0" + l)ajx'+l = -xQ>(x). (6.8) 

Note that 5 is continuous on the interval [0, R) and, hence, at x = p = q~l by our assumption. 
Thus, we have 

Mm S(q;1) = S(q~l) = £ (/ +l**/^*1* < +°°. (6.9) 

Furthermore, 

W ) = 2 0" + l ) ^ + 1 ) * ̂ r"1) (6.10) 
;=0 
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for all r>rQ. Thus, by (6.7) arid (6.10), we have 8r{q~l) < S(q~l) for all sufficiently large r and, 
hence, using (6.9) we see that limr_>00 Sr(q7l) = S(q~l) < +oo. In other words, the denominator of 
(6.5) converges to that of (6.6) as r tends to oo. Note that this value is not zero. 

Let Br denote the numerator of (6.5); i.e., 
r - l f r-l r-l 

j=Q \k=J J k=0 \J=0 J 

Furthermore, set 

£=0 \j=Q J &=G \J=0 
so that w e have 

\Br-Cr\<\Br~Hr\ + \Hr-Cr\. 

First, let us consider Dr =\Br-Hr\. We have 

r - l 

I 
£=0 

Dr<T^r(k+1) 1-
-(*+l) 

,-(*+!) 
( k > 

I>/l"-/ 

(6.11) 

(6.12) 

It is easy to see that 11 - q^k+1) / q^k+l) | = 11 - (qr Iq)k+l \<(k +1)(1 - (qr Iq)) for all k > 0, since 
$. < q. Thus, Z)r < (1 - qr Iq) l£0(k + l)akq;{k+l)(T,%0 qJ

r\a_j |) by (6.12). Furthermore, since 
qr<q,we have q[ \a_j \ < q1 \a_j \ < K for all j > 0 by our assumption. Hence, w e obtain Dr < 
K{\ -qrlq) ££}>(* + l)2akq^k+i). Consider the function T defined by 7"(x) = Z%0(J + ifa^1, 
which is continuous on the interval [0, R), since T(x) = x$'(x), where S is the function defined by 
(6.8). Since Q<q~l < R by our assumption and l im^^g, . = q, there exists an r2>r0 such that 
0 < q~l < q~l < R for all r > r2. As qr < qr, whenever r < r', we obtain 

Dr <K^l-^W(k + lfakqf +!> = A T ( # ) ( l - & ) = ^ ( l - ^ j (6.13) 

for all r > r2, where Mx - KT(q~l) is a positive constant. 
For Er = \Hr - Cr |, we have Er < Z ^ 0 a k q - ( k + l \ Z % 0 \qJ

r -qs \\a_j |). Therefore, 

2>/-<7;'!l«-,l=I<?; 
j=0 j=o 

1- a_ (6.14) 

for every k > 0. Furthermore, since 0 < <yr < q, we have 11 - (qr I q)J \ < j(\ - qr I q). Hence, (6.1) 
together with (6.14) implies 

I ltf-̂ lla-,1 * (l- |)t^l«-;l < f (^02(l-|). 
Then we have 

E> - f (! ~ f"l?0
(*+1)2a^"("+1)=M* [l - 7 ) 

where M 2 = KT{q~l) 12 is a positive constant. 

(6.15) 
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By (6.11), (6.13), and (6.15), we have 

\Br-Cr\<M^l-^y 

where M = MX + M2>Q. On the other hand, since 
r - l 

£=0 V = 

r - l 

I«*<f(*+1) Z^l«-/I ^^K* + l)«W"(*+I)^^(r,)<-K» 
&=Q 

by our assumptions, limr_>00 Cr exists and is equal to 

it=0 

.-(*+i) a. -y? 

(6.16) 

(6.17) 

(6.18) 

since (6.17) shows that the above series converges absolutely. Thus, by (6.16) together with the 
fact that q = limr_^O0qr\ we see that limr_>o0Br exists and is equal to the value as in (6.18), which 
is nothing but the numerator of (6.6). D 

Lemma 6.6: Assume that one of the three conditions of Theorem 6.1 is satisfied. Then (6.1) 
implies condition (Q,). 

-U+n-l) <Kq\ 

Proof: By (6.1), for all n > 1, we have 
00 00 00 

5>7+*-i \a_j\< K%aJ+n_iq-J = Kq^^a^q 
;=0 ;=Q ;=0 

since we have Z J=0 ̂ /?~(;+1) = 1 • Thus, condition (C^) is satisfied. D 

Combining Theorem 5.2, Lemma 6.5, and Lemma 6.6, we obtain Theorem 6.2. 
When p~ R, we have a partial result as follows. 

Proposition 6,7: Assume that one of the three conditions of Theorem 6.1 is satisfied, that dh - 1 
for some rx > rQ, that Z*L0(j + l)afl~0+l) = +°o, and that the series EJ=0 qJ I <*_/ I converges. If the 
sequences {^(r)/g"}n>1 are uniformly convergent for r>ru then Fw exists for all n and we have 

Note that the above condition implies that p = i? [see (6.9)]. 

Proof of Proposition 6.7: Since we have g > gr, we see easily that the numerator Br of (6.5) 
satisfies 

r - l r - l 

I^I^Z?/ |a-yl^Z? y |a-yl^S^l a -yl < + 0 °-
y=0 7=0 ;=0 

(6.19) 

The result now follows from Theorem 5.2, (6.5), Lemma 6.6, and (6.19). D 

Remark 6.8: Results similar to Theorem 6.2 and Proposition 6.7 were obtained in Theorem 3.2 
of [ 11 ] by using the Markov chain method. See, also, Theorem 3.10 of [8]. 

Problem 6,9: We do not know if d„ = gcd{/ +1: at > 0} = 1 ( o dri = 1 for some rx > r0) implies 
that L = hmn^aoV„/qn exists in general Note that in some special cases dn = 1 if and only if 
l im^^ Vn lqn exists, as was shown in [11]. 
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7. EXAMPLE 
Let us give an explicit example of our main theorem of the previous section. 
Fix a real number a~l = /3 > 1 and set a~l = fir = ^1_(1/r!) for r > 1. Consider the sequence of 

real polynomials {Ur(x)}r>x defined inductively by 

Ul(x) = 2x-2/3l, (7.1) 

Ur+l(x) = xUr(x)-fir+fIr(fir+0 (r*l). (7.2) 
Therefore, we have Ur(x) = 2xr -a0xr~l ar_2x-ar_l for some strictly positive real numbers 
aj (j > 0). Note that Pr is the unique positive real root of Ur(x). Set Wr(x) = 2-a0x 
ar_2xr~l -ar_xxr = xrUr(x~l). Then we have Wr(0) = 2 and Wr(ar) = 0. Furthermore, we set 
W(x) = 2-Z%aJx'+l. 

Lemma 7.1: We have W(a) = 0 and 0 < a < R, where R is the radius of convergence of W. 

Proof: Since Wr(ar) = 0 and a, = fiJ+lUj(fiJ+l) < 2fifi\ < 2/3J+l = 2a~(i+X), we get Wr{a) = 
Wr(a)-Wr(ar) = a0(ar-a)+al(a2

r-a2) + — +ar_1(ar
r-ar). Thus, 

Wr(a) < 2(ar - a)/a+2(a2
r-a2)/a2 + ••• +2(ar

r -ar)lar 

= 2(j3Vr'-l) + 2(jl2/rl-l) + "-+2(fir/rl-Y). 
Therefore, we have 

Wr(a) <2r(J3V(r~xy-\) = (2rl{r-l)!)(r-l)!091/(r-1)!-1)-> 0 (r ->• oo). 

Thus, W(a) = l i m ^ Wr(a) = 0. • 

Set Q.(x) = Wr(x) -1 and Q(x) = W(x) -1. Then, for each r > 1, there exists a unique posi-
tive real root pr of Qr. Furthermore, by Theorem 6.1, p = limr^00 pr exists and Q(p) = 0. Set 
qr - p~x and q - p~l and note that 0<p<R, where R coincides with the radius of convergence 
ofQ. 

Lemma 7.2: 
lim £-1 = 0. (7.3) 

Proof: Let us fix an r > 1 for the moment. The functions W(x) and Wr(x) defined on the 
intervals [0, d) and [0, oo), respectively, are differentiate with strictly negative derivatives. Let us 
denote by g: (0,2] -> [0, d) and gr: (-oo, 2] -> [0, oo), respectively, their inverse functions. Then 
define the differentiate function / : ( 0 , 2 ] - > R by f(y) = g(y)r-gr(y)r. For ys(0,2), set 
x = g(y) and xr = g"r(y). Then we obtain xr > x> 0 and 

T7 4) 

xr xr xr x
r 

Hence, by (7.4), we have / ' (y ) = n r r - 1 ^ ' ( ^ ) " 1 - < " 1 ^ W 1 ^ 0- Thus, the function/is non-
decreasing and we obtain ar -ar

r = lim^+o f(y) < / ( l ) = pr -pr
r. Therefore, 
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for all r > 1. Then we have 
\pr-pr

r\ = pr
r-pr<\ar-ar

r\ 

Pr
r <\<± ar = |f|l^-I) !-l| = 1 | ^ r - ' > ! - l l 

p) (r-1)! l / ( r - l ) ! 
' « v 

(7.5) 

Since \imr^(alp)r /(r-1)1 = 0 and l im^ i f i 'W- - l\(r-1)! = In/?, equation (7.3) holds. D 

Let {F„}„eZ be the QO-GFS defined by V„ = q". Let us show that the conditions of Theorem 
6.2 are satisfied for this sequence. Recall that we denoted x£r) = V^r)/q"; see Theorem 5.2. 

Lemma 7.3: The sequences {x£r)}„>i are uniformly convergent for r > 1. 

Proof: By Lemma 7.2, for a given s > 0, there exists an r2 > 0 such that | / / /p^ - 1 | < f/2 
for all r > r2. Let us fix an r with r > r2. Then, by (3.1), for every n with -r +1 < n < 0, we have 

l * i r ) - l | = la 1 £ - 1 - 1 
# 

(7.6) 

Suppose \x^ -11 < s12 for all A: with - r +1 < k < n, where n > 0. Then, by (6.4) and the rela-
tion 4r

+\ = (a0 / ? r ) x « + (a, /9?)x*?i + • • • + (ar_l I qr
r)x£r+i, we have 

1^.-11 = *<*$'>-1) 4(^.-1) + ••• + a, 
2" 

(7.7) 

Thus, by induction, we see that |x£r) -11 < £ / 2 for all /?, provided that r > r2. 
On the other hand, by Lemma 6.4, Z,r = lim „_><„, x^r) exists for all r > 1 and we can check that 

lim,.^ Z,r = 1 by using (6.5). Hence, there exists an r3 > r2 such that \Lr-l\< s/2 for all r > r3. 
Therefore, for all r>r3 and all w>l, we have \x^r) - Lr\<\x(

n
r) ~l\ + \l- Lr\< € /2 + s /2 = g. 

Since we have only a finite number of fs with r3 > r > 1, there exists an JV such that |x£r) ~ Lr | < e 
for all w > N and all r with r2 > r > 1. Thus, we have proved that the sequences {^(r)}w î are 
uniformly convergent for r > 1. • 

Therefore, we have shown that all the conditions in Theorem 6.2 are satisfied. On the other 
hand, we see easily that 

X 2>W j-k-i 

limV^zi • = 1 . (7.8) 
EO'+i)^"0+1) 
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