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1. INTRODUCTION 

The aim of this paper is to study the main properties of the derivatives B$p(x) and Cjp(x) of 
the Morgan-Voyce polynomials Bn(x) and Cn(x) (e.g., see [8]) described in the next section. 
Here x is an indeterminate and the bracketed superscript symbolizes the first derivative with 
respect to x. As done in previous papers, we shall confine ourselves to considering the case x = l. 
For notational convenience, the terms Bjp(l) and Cjp(l) will be denoted by Rn and Sn, respec-
tively. 

Various papers have dealt with this kind of polynomial pairs. For example, the polynomial 
pairs (Fibonacci, Lucas), (Pell, Pell-Lucas), and (Jacobsthal, Jacobsthal-Lucas) have been studied 
in [1], [2], [3], [4], [9], and [10]. 

The paper is set out as follows. After recalling some background material on the Morgan-
Voyce polynomials, we show first some basic properties of the numbers Rn and Sn the most 
interesting of which are5 perhaps, expressions for sums and differences involving subscript sums 
and differences (see Section 3.3). In Section 4, we evaluate certain finite sums involving Rn and 
Sn. We conclude the paper with some properties of divisibility and the primality of Rn and S„. 

1.1 Some Useful Results for Fibonacci and Lucas Numbers Fn, Ln 

Binet forms are 
F„ = (a"-b")/j5, (1.1) 
L„=a" + b", (1.2) 

where a and h are the roots of the equation t2 -1 - 1 = 0, i.e., 
a = (l + V5)/2, ft = ( l -V§)/2 (soa + ft = l, ab = -\ a~b = <S). (1.3) 

From (1.1)-(1.3), it follows readily that 
(1.4) 
(1.5) 
(1.6) 
(1.7) 

Some relationships among Fibonacci, Lucas, and Morgan-Voyce polynomials that are appli-
cable to the development of our theme include 

xB„(x2) = F2n(x), (1.8) 
C„(x2) = L2n(x). (1.9) 

Fn+2p+Fn-2p 

f'n+lp ~ ^n-2p 

Ln+2p + Ln-2p 

^n+2p ~ ^n~2p : 

= FnL2p> 

= LnF2p> 

~ LnL2p, 

=$mP-
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These occur as (4.1) and (4.3) of [8]. Substituting x = 1 in this pair of relationships yields 
B„ = F2n, (1.8a) 
C„ = L2„, (1.9a) 

where B„:=B„(1),.... 
Background information on the Fibonacci and Lucas numbers may be found in [11]. 

2. BACKGROUND MATERIAL 

Consider the polynomial sequence {Xn(x)} denned by the recurrence 
X„(x) = (x + 2)X„.l(x)-Xn_2(x) (»>2) (2.1) 

with initial conditions 
X0(x) = a0, Xx(x) - ax (a0, ax integers). (2.2) 

Special cases for the Morgan-Voyce polynomials Bn(x) and C„(x) are: 

J(a0, a,) = (0,1) ifXn(x) = B„(x), 
\(a0, a,) = (2,2 + x) i£X„(x) - C„(x)-

It has to be pointed out that, in the very special case x = 0, we have 
Bn(G) = n and Cn(0) = 2\/n. (2.4) 

Combinatorial expressions for the above polynomials are 

C»(x>"t-^l(n+2k~l)xk+x" ("Sl> t8'(3-22)]- (26> 
k=0 n K v. y 

Observe that, if we assume that 0° = 1 (see [5] for some considerations on this assumption), 
then (2.5) and (2.6) hold also for x = 0 [cf. (2.4)]. 

Binet forms are 
5„(x) = («"-/?")/A, (2.7) 
Cn(x) = a" + S", (2.8) 

where the roots a : = a(x), /?: = J3(x) of the characteristic equation t2 - (x + 2)/ +1 = 0 are 

a = (x + 2 + A)/2, /? = (x + 2 - A ) / 2 (2.9) 
so that 

a +/? = x + 2, a/?=l, a-fi = A: = A(x) = ^/x(x + 4). (2.10) 

Clearly, (1.3) contrasted with (2.9) and (2.10) together reveals that a2 = a(l)? b2 =p{\). 
Notice that 

a(D.=£foW * flm^g&^l (2.n) 
dx A dx A 

leading to 
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and 

dx A(x)' 

(2.12) 

(2.13) 

3. SOME ELEMENTARY PROPERTIES OF R„ AND S„ 
3.1 Basics 

From (2.5) and (2.6) we immediately obtain the derivatives 
n- l 

^)w:=^w=IMST+irI ("-0)-
n-l 

n + k 

q?>(x) := ̂ Q ( x ) = "± | ^ ( " + / ^ i y ~ > +nx^ („ > 1). 

(3.1) 

(3.2) 

For example, B?\x) = 3x2 +12x +10 and C ^ x ) = 4x3 + 24x2 + 40x +16. 
When x = l, the following table can be constructed [5^(1): = R„, C^\l): = S„] from (3.1) 

and (3.2). 
TABLE 1. Values of Rn and SH for 0 < n < 10 

n 

K 
sn 

0 1 2 3 4 5 6 

0 0 1 6 25 90 300 

0 1 6 24 84 275 864 

7 8 

954 2939 

2639 7896 

9 10 

8850 26195 

23256 67650 

(3.3) 
(3.4) 

(3.5) 
(3.6) 

Observe that the value of RQ can be obtained by letting x = 1 in (3.1) with the assumption 
that a sum vanishes whenever the upper range indicator is less than the lower one. The value of 
S0 comes from the fact that the initial condition C0(x) = 2 is independent of x. 

Using the Binet forms (2.7) and (2.8) with (2.12) and (2.13), we deduce that 

B£\x) = [nCn{x)-(x + 2)Bn{x)]l A2, 
C^\x) = nBn{x) as in [8, (3.24)], 

whence 
R„ := B$\\) = (nL2„-3F2n)/5 [by (1.8a) and (1.9a)], 
S„:=C„(\) = nF2n [by(1.10a)], 

results which are of subsequent application. 
3.2 Negative Subscripts 

Direct differentiation of B_„(x) = -Bn(x), G_n(x) = C„(x) [8, (5.1), (5.2)] yields 

R-„ = -Rn, (3-7) 
S-„ = SH. (3.8) 

3.3 Sums and Differences Involving Subscript Sums and Differences 
Routine algebraic computation applied to standard Fibonacci and Lucas number knowledge 

[see (1,4)-(l .7)] with (3.5) produces the identities 
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with special cases 

(p = l): 

(p = n): 

Furthermore, with (3.6), 

Rn+p + Rn-p ~ L2pRn + F2nSp> 

Rn+p " Rn-p = ^2/T^p + Flffin > 

whence 

^4+1 + ^7-1 - 3 i ^ +F2n, 

i^+i ~ Ki-i = ^ 2 » = ^ by (3.6). 

^ = L2nRn+nFl = I 2 A + ̂ A -

Sn+p ~ S„_p = nL2„F2p + pFinLip, 

$2n = 2L2„S„. 

4. EVALUATION OF SOME FINITE SUMS FOR i?„ AND &. 

(3.9) 
(3.10) 

(3.11) 
(3.12) 

(3.13) 

(3.14) 
(3.15) 

(3.16) 

As a calculational aid in the ensuing investigations, we need the following identities [1], [7] 
which are valid for arbitrary y\ 

f,ryr=[kyk+2-(k + l)yM+y]/(y-l)\ 
r=Q 

k 

ZfjV = (y+i)fc, 

Proposition 1: 

Proposition 2: 

k 

I 
r=0 

y£Rr = l + (kL2k+l-L2k-3F2k+l)/5. 

k 

I 
r=0 

^Sr = kF2k+l-F2 '2k-

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

Proof of Proposition 1: Taking (3.5) into account, rewrite the left-hand side of (4.4) as 
k k 

Z r Z 2 r - 3 X F 2 r 
r=0 r=0 

by (l.i), (1.2) X,Vr+*2'")-^X(«2r-z>2'') 
[r=0 V3 r = 0 J 

= [t t2 j k + 2-(* + l)I2jk+2-3(F2ik+1-l)]/5 by(4.1)withy = a\h2 

= (kL2k+i-L2k-3F2k+l + 5)/5. D 

Identity (4.5) can be proved in a way similar to that for (4.4). 
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Proposition 3: 
(5(k-2)/2(kpk+i _ Wk) (J, e v e n ) j 

{5^y\kLk+1-3Lk) (kodd). r=Q\ J 
(4.6) 

Proposition 4: 
y (H\ - l5ik~2)>2kLk+i (k e v e n)> 
hv)r" l * * - ^ * / ^ (* odd). (4,7) 

To prove Propositions 3 and 4, we need the following lemmas. 

Lemma 1: 

S ' f ' l r ^ <*odd). (48) 

Lemma 2: 

f(k\L -\5k'2kFk+m+1 {keVenX (49) 
hv)rL^ \s^kLk+m+1 (.odd). ( 4 9 ) 

±(*]rF7 J 5 ( " 2 ) / 2 ^ - <*ev»>« (4 10) 
£ 0 W ^ \s^kFk+m+l (kodd). ( 4 1 0 ) 

To prove these three lemmas, use (1.1)-(1.2) along with (4.2)-(4.3) while recalling the key 
relationships a2 +1 = aV5 and A2 +1 = -&V5 deduced from (1.3). 

Proof of Proposition 3 (a sketch): From (3.5), rewrite the left-hand side of (4.6) as 

-3F2r), 

Lemma 3: 

mh' whence the right-hand side of (4.6) can be obtained after some algebraic enterprises involving 
(4.8), and (4.9) with m = 0. D 

With the aid of Lemma 3, Proposition 4 can be proved in a similar way. 

5. SOME DIVISIBILITY PROPERTIES OF RH AND SH 

In this section, the divisibility of Rn and Sn by the first three primes is investigated. To save 
space, only Proposition 7 is proved in detail. A glimpse to the primality of the integers under 
study is caught at the end of the section. 

Proposition 5: (i) Rn is odd iff n = 2(3& ± 1), while (ii) Sn is odd iff n = 6k ± 1. 

Proposition 6: (i) Rn is divisible by 3 iff either n = 3k or n = 6k ± 1, while (ii) Sn is divisible by 3 
iff either n-2k or n = 3k. 

Corollary to Propositions 5 and 6: Both Rn and Sn are divisible by 3 iff they are even. 

Proposition 7: (i) Rn is divisible by 5 iff either n = 5k or n = 5k ± 1, while (ii) Sn is divisible by 5 
iffn = 5k. 
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Proof; The- proof of (ii) is trivial as it is based on (3.6) and the well-known fact that Fn is 
divisible by 5 iff n is. As for (i), from (ii) and (3.12) we can say that 

Rnu s i^_! (mod 5) <=> n = 0 (mod 5). (5.1) 

Further, from the recurrence Rn = 3Rn_l-Rn_2 + F2n_2 [that is readily obtained by calculating at 
x = l the first derivative with respect to x of both sides of (2.1) with X = B9 and using (1.8a)], 
and from the conditions on n for Fn to be divisible by 5, we have that 

Rn+l s 3Rn -Rn_x (mod 5) <̂> n = 0 (mod 5). (5.2) 

From (5. l)-(5.2) we can write 2Rn+l = 3Rn (mod 5) => n = 0 (mod 5), that is, 

Rn+l = -Rn (mod 5) => n = 0 (mod 5). (5.3) 

From (5.3) and (5.1), it remains to prove that 
n = 0 (mod 5) => Rn = 0 (mod 5). (5.4) 

Put n = 5k in (3.5) thus getting 
R5k = kLm-3Fm/5. (5.5) 

On using (2.4)-(2.4/) of [6], we can express Fm 15 (for k even) as 
k/2 

I X (̂ 20r-17 + ̂ 20r-14 + F20r-4 + F20r-7 + F20r-9 + F20r-l l) (5 •6) 

and (for k odd) 
(k-l)/2 

1 1 + X C^0r-7 + ^20r-4 + F20r+6 + ^20r+3 + ^20r+l + ^20r- l ) • ( 5 • 7 ) 
r=l 

For r = 1, expression (5.6) is congruent to 3 modulo 5. Since the repetition period of the Fibo-
nacci sequence reduced modulo 5 is 20, the congruence above holds for all r < k 12. It follows 
that Fm /5 = 3k 12 (mod 5) if k is even. Analogously, it can be seen from (5.7) that Fm /5 = k 
(mod 5) if & is odd. Summarizing, we found that 

(2k (mod 5) (&even), 
3 i w / 5 H (5.8) 

10* [3k (mod 5) (it odd). 
Finally, the inspection of the sequence {kLm} reduced modulo 5 shows that 

(2k (mod 5) (k even), 
10* |3* (mod5) (kodd). v ' 

Identity (5.5) along with congruences (5.8) and (5.9) prove (5.4) and the proposition. D 

5.1 On the Primality of Rn and SH 

Since Sn = 0 (mod w) for n> 1 [see (3.6)], these integers cannot be prime. From Proposi-
tions 5-7, we see that a necessary condition for Rn to be a prime is that n = 2, or 8, or 22, or 28 
(mod 60). By using the function "nextprime" of the software package DERIVE, we found only two 
prime Rn for n < 248, namely, 

i?8 = 2939 and i?68 = 352,536,175,722,757,107,150,131,558,879. 
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6. CONCLUSIONS 
What has been presented in the preceding theory provides us with some feeling for the flow 

of ideas emanating from the initial sources. 
Future directions of related research studies could lead to the investigation of partial deriva-

tive aspects of the Morgan- Voyce polynomials and, perhaps more importantly, to the integration 
sequences associated with these mathematically fertile polynomials. 
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