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Let t be an integer. A /J-set of size n is a set A - {xl7 x2,..., xn) of distinct positive integers 
such that x^+t is a square of an integer whenever i&j. These /J-sets are said to verify 
Diophantus' property. In fact, Diophantus was the first to note that the product of any two 
elements of the set {^, f§, *%-, ^ } increased by 1 is a square of a rational number. We now 
introduce a more general definition. 

Definition 1: Let k > 1 be a positive integer, and let t be an integer. A i ^ - s e t of size n is a set 
A = {x1? x2?..., xn) of distinct positive integers such that n / e / xt +1 is a k^-power of an integer 
for each / c: {1,2,..., n) where card(7) = k. 

A i ^ - s e t A is said to be extendible if there exists an integer a &A such that A u {a} is a 
P/^-set. When k = 2, these sets are exactly the j^-sets. The problem of extending /J-sets is 
very old and dates back to the time of Diophantus (see Dickson [5], vol. II). The first famous 
result in this area is due to Baker and Davenport [3], who showed that the Prset {1, 3,8,120} is 
nonextendible by using Diophantine approximation. Several others have recently made efforts to 
characterize the i^-sets (see references). However, nothing is known about the i ^ - se t s when 
k>3. 

The purpose of this paper is to exhibit a f^(3)-set of size 4, and to show (Theorem 1) that this 
set is nonextendible. We also prove (Theorem 2) that the i ^ - s e t {1,2,3,4} and the P/4)-set 
{1,2,5, 8} are nonextendible. In Theorem 3 we show that any P^-set is finite. 

Example of a Pt
{3)-$et: The set {1,3,4,7} is a P_(

2
3 ŝet of size 4. 

Theorem 1: The Pi23o~set ft 3> 4>7) i s nonextendible. 
Proof: Suppose there exists an integer a such that {1,3,4,7, a) is a P^-set. Then the fol-

lowing system of equations 
[ 3a-20 = u3, 
|21a-20 = v3, (1) 
[ l2a-20 = w3, 

has an integral solution (u, v, w) e N3. One can derive more equations in the system (1) but this 
is not necessary for our proof. The system (1) yields 

u3 + v3 = 2w3 with (u, v, w) GN3. (2) 
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However, it Is well known from the work of Euler and Lagrange (see Dickson [5], vol. II, pp. 
572-73) that all solutions of equation (2) in positive integers are given by u = v = w, which is 
impossible in the system (1). • 

It would be interesting to know if there exists any P/^-set of size n > k > 4. For n = k, the 
problem is easy. In fact, there are two strategies for finding a P/^-set of size k. 

(1) Fix any k positive integers al9 a2,..., ak. Let A be an integer and t = Ak -Tlf=1 at. Then 
the set {al9 a2,...,%} is a P/^-set of size k. For example, let k = 4, ax - 1, a2 = 2, % = 3, a4 = 4, 
and ^ = 2. Then t = -8 and {1,2,3,4} is a P_(

8
4) -set of size 4. 

(2) Fix any t, and choose any integer A such that there exist k different factors ax, a2,..., ak 

nonnecessary primes and Ak -t- Tlf=i^-. Then the set {ah a2, ...,ak} is a 7}^-set of size &. For 
example, let & = 4, r = 1, and A = 2. Then A4 -t = 80 = 1-2-5-8 and {1,2,5, 8} is a P/4)-set of 
size 4. 

Theorem 2: 
(a) The P_(

8
4) -set {1,2,3,4} is nonextendible. 

(b) The ii(4)-set {1,2,5, 8} is nonextendible. 

Proof-
fa) Suppose there exists an integer a such that {1,2,3,4, a} is a P_(g} -set. Then the follow-

ing system of equations 
" 6a -8 = x4, 

8 a - 8 = / , 
12a-8 = z4, V j 

|24a-8 = w4, 

has an integral solution (x, >>, z, w) G N4. A congruence mod 16 shows that this is impossible. 
(b) Suppose there exists an integer a such that {1,2,5,8, a) is a P/4) -set. Then the following 

system of equations 
[l0a + l = x4, 
Il6a + 1 = / , (4) 
40a + l = z4, w 

|80a + l = w4, 
has an integral solution (x, y, z, w) G (N*)4. The system (4) yields 

w4 +1 = 2z4 with (z, w) G (N*)2. (5) 

But it is well known (see [13], pp. 17-18) that all solutions of (5) are given by w = z = 1, and this 
gives a = 0. • 

Theorem 3: Any i ^ - s e t is finite. 

Proof: Let {al9..., %, % b N} be a P/^-set. Let a = axa2 ...akakH, 

a = — - , p = , and r=-
axa2' ^ a ^ ' ' a2a3 

Then there exist integers x, >>, and z such that 
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aN + t = xk, f3N + t^yk, and yN + t = zk. 

Hence, we obtain a superelliptic curve 

(aN + i){fiN + t)tyN + t) = wk 

(for k = 2,3, this is an elliptic curve), and from Theorems 6.1 and 6.2 in [15] it follows that 
N < C for some computable number C depending only on k, a,J3,y, and t. D 
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