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1. INTRODUCTION

Let R(N) be the number of representations of the positive integer N as the sum of distinct
Fibonacci numbers. N has a unique Zeckendorf representation [4], [3], in which no two consecu-
tive Fibonacci numbers appear in the sum. Several methods have been developed for determining
R(N), many of which involve recursive formulas based on the number of representations of
smaller integers [1]. In this paper we present an algorithm for determining R() solely from the
subscripts of the Zeckendorf representation of N. Carlitz [2, p. 210] has given a similar algorithm
that can be used in the special case in which the subscripts in the Zeckendorf representation have
the same parity.

2. STATEMENT OF THE ALGORITHM

Algorithm for R(N): Write the Zeckendorf representation of N with the subscripts in descending
order as follows:

N=iF(S,“_i)=F(S,)+F(S,_1)+F(S,_2)+°~+F(Sj)+F(Sj_1)+-~~+F(S1),
i=1

where §; 2§, ;+2 and §, 22, and F(k) = F,. Define:
L=1;
T, =[S, /2] (where [ ] is the greatest integer function). Let
T,=[(S;-8;,.4+2)/2]T,_, if §; and §;_, are of opposite parity,
T=[(S;-8.1+2)/2]T,_,-T,_, if §; and §,_, are of the same parity.
Then R(N)=1,.

Example 1: Find R(63). The Zeckendorf representation of 63 = Fj, + F;. Thus:
I,=1 (by definition);
h=[6/2]=3,
L, =[(10-6+2)/2]T; - T, = (3)(3) - 1=8= R(63).

Example 2: Find R(824). The Zeckendorf representation of 824 = Fis + F, + F;, + F, + F;. Thus:
1, =1 (by definition);
h=[3/2]=1;
L =[(1-3+2)/2) - T, = (3D -1=2;

L, =[(10-7+2)/2]T; = (2)2) = 4;

I,=[(12-10+2)/2),~ T, = (2)(4) -2 =6;

I =[(15-12+2)/2]T, = (2)(6) =12 = R(824).
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Remark: In the special case in which all S; are even, the validity of the present algorithm follows
easily from the algorithm of Carlitz [2, p. 210]. (Alternatively, the validity of the algorithm of
Carlitz follows from the validity of the present algorithm.) Suppose that all S, are even. We write
S, =2k, Si1=2ky,..., 8 =2k, and j =k —k,,, s=1,..,t-1, j =k, Stil following Carlitz,
we define =1, C; = j+1, and C, = (j,+1)C,_,-C,_,, s=2,...,¢. Slightly modifying the last
step, we define C; = j,C,_, - C,_,. Writing

X -1 0 -« 0
-1 x, =1 - 0
Cln,nx)=| 2
0 0 0 - x

for the continuant, we have [2, p. 212]
R(N)=C-C,=C
=C(h+L p+L ., jim +1 )
=CUp i+ L jia+L ., i+ D=1
For example, if N = Fjo+ F;+ F, =1011, then (j, +1, j, +1, ;) =(5,3,2) and the (modified)
Carlitz algorithm gives:
G=1;
C =5;
C=(3)5)-1=14;
C;=(2)(14)-5=23=R(N).
Using the present algorithm, we obtain:
Lh=1
Ii=2;
T =)@ -1=5
L=(505)-2=23=R(N).

3. PROOF OF THE ALGORITHM

Lemma: Following the steps of the algorithm set forth in Section 2, if N = F,,—1 (m > 3), then
]6:];:-0-:7;:1_
Proof: This follows immediately from the formulas [3]
Ft B+t By, =Fy—1 (122) and B+ F+ -+ F,=F—1 (22 1),

Theorem: Following the steps of the algorithm set forth in Section 2, R(N) =1T,.

Proof: We use induction on ¢, the number of terms in the Zeckendorf representation of N.
(Note that, if 7 > 1, then the Zeckendorf representation of N — F(S,) is clearly F(S,_)) + F(S,_,) +
ek F(S)+F(S;)++ F(S).)

1. The cases =1 and ¢ =2 follow immediately from the formula [1, p. 53] R(F,) =[n/2] and
from [1, Theorem 7, p. 58], respectively.
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2. We suppose now that >3 and that the theorem is valid for -1 and 1 —-2. Let S, =m and
S,_,=n,sothat m—n>2 and n>4. We write

N'=N=-F(S)=F(S.)+F(Sp) +- +F(S)+F(S;_) + - + F(S).
Then we have F, < N'<F, ,—1.

a) IfF,<N'<F,, -2,weuse[l, Corollary 3.1, p. 53].
a-1) Suppose that m—n is odd. Then
R(m)=[(m-n+1)/2R(N") =[(m-n+2) /21T, = T,
using the induction hypothesis.
a-2) Suppose that m—n is even. Using [1, Theorem 2, p. 48] and the induction hypoth-
esis, we get
R(N)=[(m-n+1)/2]R(N")+R(F,,,-2—-N")
=[(m-n+2)/2]R(N") - (R(N")-R(F,,, -2-N"))
= [(m~n+2)/2)R(N")~R(N' ~ F,) = [(m~n+2)/ 21T, ~ T, = T,
b) Suppose now that N'=F, ,-1=F,+F, ,+--- . By [1, Theorem 7, p. 58], we have
R(N)=[(m—-n+1)/2]. On the other hand, using the Lemma, we have
T =((m-n+2)/2)N)=[(m-n+1)/2]
if m—n is odd, while
T =((m-n+2)/2)1)-1=[(m-n+1)/2]

if m—n is even. So we have R(N) = T, in this case also. This completes the proof.
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