
AN ALGORITHM FOR DETERMINING M(N) FROM THE SUBSCRIPTS 
OF THE ZECKENDORF REPRESENTATION OF N 

David A. Englund 
9808 Wilcox Drive, Belvidere, IL 61008 

(Submitted April 1999-Final Revision July 1999) 

1. INTRODUCTION 

Let R{N) be the number of representations of the positive integer N as the sum of distinct 
Fibonacci numbers. # has a unique Zeckendorf representation [4], [3], in which no two consecu-
tive Fibonacci numbers appear in the sum. Several methods have been developed for determining 
R(N), many of which involve recursive formulas based on the number of representations of 
smaller integers [1]. In this paper we present an algorithm for determining R(N) solely from the 
subscripts of the Zeckendorf representation of N. Carlitz [2, p. 210] has given a similar algorithm 
that can be used in the special case in which the subscripts in the Zeckendorf representation have 
the same parity. 

2, STATEMENT OF THE ALGORITHM 

Algorithm for R(N): Write the Zeckendorf representation of N with the subscripts in descending 
order as follows: 

N = i > ( S , + w ) = F(St) + F(S,_l) + F(St_2) + -+F(SJ) + F(SJ_l) + -+F(S1), 
i=l 

where Sj > 5/_1 + 2 and Sx > 2, and F(k) = Fk. Define: 

2o = i; 
Tx - [Sx 12] (where [ ] is the greatest integer function). Let 
Tj - [(Sj -Sj_i + 2)/2]TJ_l if Sj and Sj_t are of opposite parity; 
Tj - [{Sj - Sj_{ + 2) /2] Tj_x - JT-_2 if Sj and Sj_x are of the same parity. 

Theni?(AT)=7;. 
Example 1: Find i?(63). The Zeckendorf representation of 63 = FlQ +F6. Thus: 

T0 = l (by definition); 
2J = [6/2] = 3; 
T2 = [(10-6 + 2)/2]2J- T0 = (3)(3)-1 = 8 = i?(63). 

Example 2: Find J? (824). The Zeckendorf representation of 824 = Fl5 + Fl2 + Fl0 + F7 + F3. Thus: 
T0 ~ 1 (by definition); 
3J = [3/2] = 1; 
5 = [ ( 7 - 3 + 2)/2]3;-r0 = (3)(l)-l = 2; 
5 = [ ( 1 0 - 7 + 2)/2]J2 = (2X2) = 4; 
^=[(12"10 + 2)/2]r3™r2 = (2)(4)-»2 = 6; 
T5 = [(15- 12 + 2)/2]J4 = (2)(6) = 12 = i?(824). 
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Remark; In the special case In which all Sf are even, the validity of the present algorithm follows 
easily from the algorithm of Carlitz [2, p. 210]. (Alternatively, the validity of the algorithm of 
Carlitz follows from the validity of the present algorithm.) Suppose that all St are even. We write 
St = 2kly £,_! = 2k2,..., 5i = 2kt, and js = ks - ks+l, s = 1?... 9t -1, jt = kt. Still following Carlitz, 
we define C0 = 1, Cx = jx +1, and Cs = (js +1)Cs_t ~ Cs_2, s = 2,..., t. Slightly modifying the last 
step, we define Q = 7rCr-1 - Q_2. Writing 

Ixj -1 0 ... 0 | 

I 0 0 0 .«» x t \ 

for the continuant, we have [2, p. 212] 

R(N) = Ct~Ct_l = Q 

= C(jtJt_l + lJt„2 + l...Jl + t)=Tt. 
For example, if N = Fl6 + Fs + F4 = 1011, then (/j +1, j2 +1, j3) = (5, 3,2) and the (modified) 

Carlitz algorithm gives: 
C0 = 1; 
C, = 5; 
C2 = (3)(5)-l = 14; 
Q = (2X14)-5 = 23 =/?(iV)-

Using the present algorithm, we obtain: 
r0 = i; 
3i=2; 
r2=(3)(2)-l = 5; 
ZJ = (5)(5)-2 = 23 = £ ( # ) . 

3. PROOF OF THE ALGORITHM 

Lemma: Following the steps of the algorithm set forth in Section 2, if N - Fm -1 {m > 3), then 
r0 = 7j = ... = 7; = i. 

Proof: This follows immediately from the formulas [3] 
F3 + F5 + -+F2 / f_1 = F 2 n - l (w>2) and F2+F4 + - + F 2 n = F2n+1-l («>1). 

Theorem: Following the steps of the algorithm set forth in Section 2, R(N) = Tt. 

Proof: We use induction on t, the number of terms in the Zeckendorf representation of N. 
(Note that, if t > 1, then the Zeckendorf representation of N - F(St) is clearly F(St_x) + F(St_2) + 
..-+F(SJ) + F(SJ_l) + - + F(Sl).) 
L The cases / = 1 and t = 2 follow immediately from the formula [1, p. 53] R(Fn) = [n/2] and 
from [1, Theorem 7, p. 58], respectively. 
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2. We suppose now that t > 3 and that the theorem is valid for t -1 and f - 2. Let St=m and 
St_x = n, so that m-n>2 and n>4. We write 

^ ' = A T - F ( 5 / ) = F(5'/_1) + F ( 5 ( _ 2 ) H - . . + F ( 5 / ) + F ( 5 / _ 1 ) + - + F ( 1 S ' 1 ) . 

Then we have Fn<N'< Fn+l - 1 . 
a) If Fn <N'< Fn+l-2, we use [1, Corollary 3.1, p. 53]. 

a-1) Suppose that m-n is odd. Then 
R(n) = [(rn-n + l)/2]R(N') = [(m-n + 2)/2]Tt_l = Tt, 

using the induction hypothesis. 
a-2) Suppose that rn-n is even. Using [1, Theorem 2, p. 48] and the induction hypoth-

esis, we get 
R(N) = [(m-n + l)/2]R(N')+R(Fn+l-2-N') 

= [(m-n + 2)f 2]R(N') - (R(N') -R(F„+l -2- N')) 
= [(m-n + 2)/2]R(N,)-R(Nf-Fn) = [(m-n + 2)/2]Tt_1-Tt_2 = Tt. 

b) Suppose now that N'= Fn+l-l = Fn+Fn_2 + -- . By [1, Theorem 7, p. 58], we have 
R (N) - [(m - n +1) / 2]. On the other hand, using the Lemma, we have 

^ = ([(/if-7t + 2)/2])(l) = [(»i-/f + l)/2] 
if m—n is odd, while 

3? = ([(/if-w + 2)/2]Xl)-l = [(w-w + l)/2] 

if rn—n is even. So we have R(N) - Tt in this case also. This completes the proof. 
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