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1. INTRODUCTION 

The problem of determining the set of integer solutions of a polynomial equation, over Z, 
occurs frequently throughout much of the theory of numbers. Typically, the most common form 
of these problems involves quadratic functions in several variables, such as those dealing with the 
polygonal representation of the integers. The n^ polygonal number of order k is defined as the 
«* partial sum of a sequence of integers in arithmetic progression, having a first term of one and a 
common difference of k - 2, and so is given by j[(k - 2)n2 -{k- 4)ri\. One of the earliest results 
in connection with representing the positive integers as sums of polygonal numbers was due to 
Gauss, who proved that every positive integer could be expressed as a sum of three triangular 
numbers. Despite these classical origins, many difficult and interesting problems dealing with 
polygonal representations of the integers are still unresolved at present (see [1]). In this paper we 
shall continue with the theme of polygonal representation but in a slightly different direction by 
examining the following problem involving the differences of triangular numbers denoted here by 
T(x) = ±x(x + l). 

Problem: Given any M e Z \{0}, for what values x, y GN is it possible that M = T(x)- T(y) 
such that \x-y\ > 1, and how many such representations can be found? 

The fact that a number can be represented as a difference of triangular number is not at all 
surprising since, by definition, M = T(M)-T(M-l); hence, the restriction | X - J | > 1 in the 
problem statement. To establish the existence or otherwise of a representation for M, we will see 
that the problem can be reduced to solving the diophantine equation X1 - Y2 - %M in odd 
integers. Although this equation is solvable for all M G Z \ { 0 } , there is a subset of Z\{0}, 
namely, {±2m : m e N}, for which the consecutive triangular number difference is the only possible 
representation. Apart from the set mentioned, all other M G Z \ { 0 } will have a nonconsecutive 
triangular representation and, moreover, the exact number will be shown to equal D - 1 , where D 
is the number of odd divisors of M, which will require a combinatorial type argument to establish. 
We note that a somewhat similar problem to the one above was studied in [3] where, for a given 
s eN, it was asked for what r e N\{0} could T(r + s)-T(s) be a triangular number. However, 
unlike our result, for every r E N \ { 0 } ? there corresponded an infinite number IWGN\{0} such 
that T(m) was expressible as a difference of triangular numbers indicated. In addition to the 
above, we shall provide an alternate proof of a result of E. Lucas dated around 1873, namely, that 
all triangular numbers greater than one can never be a perfect cube. This result, as we shall see, 
will follow as a corollary of the main representation theorem. 
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2. MAIN RESULT 

We begin In this section by introducing a preliminary definition and lemma which will be 
required later in developing a formula for the total number of nonconsecutive triangular number 
representations of the integers. 

Definition 21: For a given M e N \ { 0 } , a factorization M = ab with a,b e N\{0} is said to be 
nontrivial if a & 1, M. Two such factorizations, aj\ - a2b2 = M, are distinct if ax * a2, h2. 

The following result, which concerns counting the total number of distinct nontrivial factor-
izations ab = M, may be known, but it is included here for completeness. Note that in the sub-
sequent definition for d(M) we include both 1 and M when counting the total number of divisors 
ofM 

Lemma 2.1: Let M be an integer greater than unity and d(M) be the number of divisors of M. 
Then the total number N(M) of nontrivial distinct factorizations of Mis given by 

for nonsquare M, 

for square M. 

Proof: Suppose M = p^p™1 ° * ° P„n, then the total number of divisors of M is 

d(M) = (l + ml)(l + m2)'"(l + mrl). 

Clearly, if d\M, then (M/d)\M; thus, the required factorization ab = M will be given by 
(a, b) = (d9 Mid) provided d*\9 M. Excluding d = 1 and d = M9 we have d(M) - 2 divisors 
di of M such that 1 < 4 <M for I = 1,2, ...,(d(A4)-2). Arrange these divisors in ascending 
order and consider the set of ordered pairs 

/ - {(4, M / 4 ) : i = 1,2,..., (d(M)-2)}. 

If Mis not a perfect square, then 2\d(M) and so there will be an even number of elements in 
I. Consider for each / - 1,2,..., (d(M)-2)/2 the subset /, = {(4, M / 4 ) , (M/di94)} and note 
that It r\Ij = 0 for / ^ j together with 

(d(M)-2)/2 

i = U /, 
As both ordered pairs in each particular If correspond to the same nontrivial factorization of M, 
which must be distinct from that in Ij for i*j9 one can conclude that N(M) = (d(M)-2)/2. 
Suppose now that M is a square, then d(M) will be odd, and so / contains an odd number of 
elements. Furthermore, there must exist a unique j e{l, 2,..., (d(M)-2)} such that dj = Mldj9 

from which it is clear that Ij = {(dj9 dj)}. Considering now the set / ' = I\Ij which contains only 
d(M) - 3 elements, one again has 

(d(M)-3)/2 

/'= U ',. 
from which we can count (d(M)~3)/2 nontrivial distinct factorizations of Mtogether with the 
one from Ij to obtain N(M) = 1 + (d(M) -3)12 = (d(M) -1) / 2. • 

N(M) = 
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Using Lemma 2.1, we can now establish the required representation theorem. 

Theorem 2.1: Let M e Z \ {0}, then the number of distinct representations of M as a difference 
of nonconsecutive triangular numbers is given by NA(Ad) = D-1, where D is the number of odd 
divisors of M. 

Proof: Without loss of generality, we may assume that Mis a positive integer. Our aim here 
will be to determine whether there exists x , j eN\{0} such that M=T(x)-T(y). By 
completing the square, observe that the previous equation can be recast in the form 
8M' = X2 -Y2, where X = 2x + 1 and Y = 2y + l.. To analyze the solvability of this equation, 
suppose ab - 8M, where a, b e N\ {0} and consider the following system of simultaneous linear 
equations: 

X-Y = a 
X + Y = b K } 

whose general solution is given by 

(X Y) = ^a+b b~a 

Now, for there to exist a representation of M as a difference of nonconsecutive triangular 
numbers, one must be able to find factorizations ab = 8M for which the system (1) will yield a 
solution (X, Y) in odd integers. 

Remark 2.1: We note that it is sufficient to consider only (1), since if for a chosen factorization 
ab = 8M an odd solution pair (X, Y) is found, then the corresponding representation M= T(x)-
T(y) is also obtained if the right-hand side of (1) is interchanged. Indeed, one finds upon solving 

X'-Y' = b 
X' + Y' = a 

where Xf = 2x' + 1,7' = 2 / +1 that 

j r = £±* and F = ̂ ± = -Y. 
2 2 

Thus, x' = x whiley = ( - 7 - l ) / 2 = - < y- l , so 

T ^ = tZz3tA=T(y) and T(x')-T(y') = T(x)-T(y) = M. 

We deal with the existence or otherwise of those factorizations ab = %M which give rise to 
an odd solution pair (X, Y) of (1). It is clear from the general solution of (1) that, for X to be an 
odd positive integer a, b must be at least chosen so that a + b = 2(2^ -h 1) for some s e N \ {0}. As 
ab is even, this can only be achieved if a and b are also both even. Furthermore, such a choice of 
a and b will also ensure that Y = X-a is odd. With this reasoning in mind, it will be convenient 
to consider the following cases separately. 

Cascl. M = 2n, « E N \ { 0 } . 

In this instance, consider $M = 2W+3 = ab, where (a, b) = (2\ 2n+3~~f) for i = 0,1,..., n + 3 with 
a + b = 2(21"1 + 2w+2"/) = 2(2s +1) only when / = 1, n + 2. However, since both factorizations are 
equivalent, we need only investigate the solution of (1) when (a, b) = (2,2W+2). Thus, one finds 
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that (X, J > ( 1 + 2W+1
32W+1-1) and so (x,y) = (2n,2n-l). Hence, there exists only the trivial 

representation M = T(M) - T(M-1). 

Case 2. M*2n. 
Clearly, M=2m(2n +1) for an n eN\{0} and/ueN. However, as there are more available 

factorizations of 8M, due to the presence of the term 2w + l, it will be necessary to consider the 
following subcases based on the possible factorizations cd = 2n +1. 

Subcase 1. (c, d) = (1,2n +1) . 
Here consider 8M = 2m+3(2n +1) = ab, where (a, b) = (2\ 2m+3~j(2n +1)) for / = 0,1,..., m + 3 

with a + * = 2(2/-1+2w+2-J'(2« + l)) = 2(2s + l) only when i = \m + 2. Solving (1) with (a, 4) = 
(2,2w+2(2/i + l)), one finds that (x,y)-(2m(2n + l\2m{2n + l)-l), which corresponds to a con-
secutive triangular number difference of A/, while for (a9b) = (2w+2,2(2« + l)) we have (x, j/) = 
(2OT+w,/i-2w)and so 

M=T(2m+n)-T(y'), (2) 

where y' = 2m - n -1 if y < 0 and y' = y otherwise. In either situation, one has | x - y'\ > 1, giving 
a nonconsecutive triangular number representation of M. 

Subcase 2e (c,d),c*l,2n + l. 
Here consider 8M = 2m+3cd = ab, where (a,b) = (2ic,2m+y~id) for / = 0,1,...,m + 2 with 

a + b = 2(2i~lc-i-2m+2-id) = 2(2s + l) when i = l,/w + 2. Solving (1) with (a,6) = (2c,2W+2J), one 
has (X, 7) = (c + 2*24"1 J, 2m+ld ~ c), from which it is immediate that 

and so 

(JC, j ) = [ ^-l + 2mdy 2md-^-

M^Tl ^ + 2md I- T(y')9 (3) 

where j / = - ^ - 2WJ - 1 if y < 0 and y' = y otherwise. Alternatively, when (a, b) = (2w+2c, 2d), 
one has (X, F) = (2w+1c -4- d, d - 2"* !c), from which we obtain 

(x,j)-[2-c + ̂ i,^i-2-c 

M= T\ 2mc + ̂ —- \-T(yr), (4) 
and again 

where y' = 2mc - ^ - 1 if y < 0 and y = j otherwise. In either of the representations in (3) and 
(4), it is again easily seen that |x-y'\ > 1. Consequently, for every distinct factorization cd-
2n + l with c * 1, (2w +1), we can expect at most two representations of M - 2m(2n +1) as a dif-
ference of two nonconsecutive triangular numbers. 

We now address the problem of finding the exact number NA(Af) of representations for an 
M in Case 2. Primarily, this will entail determining whether any duplication occurs between the 
various representations given in (2), (3), and (4). Recall that two factorizations af>t - aftj = %M 
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are said to be distinct if at & a., ft. for i*j. First, it will be necessary to show that any two dis-
tinct factorizations of 8M considered in Case 2 will always produce two different triangular repre-
sentations for M. To this end, we need to demonstrate that if in Z \ {0} afa = afy, with at ^ aj9 
hj for i ^ y, then one has af +£>. ^Qj + bJm Suppose to the contrary that at +bf =aj +bj9 then 
there must exist an r e Z \{0} such that a- =af+r and bt =bj+r. Substituting these equations 
into the equality atbt -app one finds a,.(ft. +r) = {at +r)ft.. Hence, r must be a nonzero integer 
solution of 

r(ai-hj) = 0. (5) 

However, this is impossible because r = 0 is the only possible solution of (5) since at - ft. =£ 0; a 
contradiction. Consequently, if for two distinct factorizations afy = o^- = 8M, one solves (1) to 
produce corresponding odd solution pairs (Xf, Yt) and (XJ? Yj), then we must have 

^ = (a,+6, . ) /2^(a7 +5,) /2 = X/. 

and so xt ^ xy-. Moreover, as xi9 Xj>0, we immediately see that T(xf) ^ T(Xj), hence 

7 ' (y / )=r (x i ) -M^7 ' (x 7 ) -M=r(y y ) . 

Thus, in order to calculate NA(M) for M = 2m(2n + l), one must determine the total number of 
distinct factorizations aft = 8M examined in Case 2. Recall that in Subcase 2 the only triangular 
representation of M was found by the factorization (a, ft) = (2W+2,2(2« +1)). Clearly, this cannot 
be repeated by the factorizations (a, ft) = (2c, 2m+2d) or (a, ft) = (2^+2c, 2J) in Subcase 2 since 
c^l, 2n + l. Now, if 2w +1 is not a perfect square, that is, c * d, then 2c ̂  2w+2c, 2J and so, by 
the above, each factorization cd = 2w +1 with c&l,2n + l will produce two unique representa-
tions of M as a difference of two nonconsecutive triangular numbers. Consequently, in this 
instance, by combining both subcases we see that NA(M) must be one more than twice the total 
number of nontrivial distinct factorizations cd = 2n + \. Thus, if one denotes by D the total num-
ber of divisors of 2w +1, then by Lemma 2.1, 

NA(M) = l + 2(^^) = D-l. 

However, if 2n +1 is a perfect square, then (2c, 2m+2d) and (2w+2c, 2d) will be equivalent factor-
izations when c = d. So by Lemma 2.1 only -f1-! of the factorizations in Subcase 2 will pro-
duce two distinct triangular representations of M. Hence, counting the remaining factorization 
(2c, 2m+2c) together with the one in Subcase 1, we find that 

NA(M) = 2(^-^~l\ + 2 = D-~l. 

To conclude, we note that the formula NA(M) = D-\ also holds for all integers 2W, where 
m = 0,1,..., since by Case 1, NA(2m) = 0 while, clearly, D~ 1 = 0 because 1 is the only odd divi-
sor of 2W. D 

Example 2.1: For a given integer M whose prime factorization is known, one can use equations 
(2), (3), and (4) to determine all of the D - l representations of Mas a difference of triangular 
numbers. To illustrate this, we shall calculate the representations in the case of a square and non-
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square number. Beginning with, say M = 22• 5• 72
? we have NA(9S0) = 5. So, if erf = 5 • 72 and 

m = 2, then apart from (c, d) = (1, 5- 72) each of the factorizations (c, d) e {(5, 72), (5-7, 7)} will 
produce two distinct representations via (3) and (4). The remaining representation can be calcu-
lated using (2), with n = (5 • 72 -1) / 2. Consequently, one obtains that 

980 = 7(126) - 7(1 18) = 7(198) - 7(193) 
- 7(45) - 7(10) = 7(143) - 7(136) = 7(44) - 7(4). 

If, on the other hand, M = (2 • 5 • 7)2, then; #A(4900) = 8. So again, for (c, d) = (1, (2 • 5 • 7)2) and 
m = 2, there corresponds one representation calculated via (2) with n = ((2 • 5 • 7)2 -1) / 2. Apart 
from (c, J ) = (5-7,5-7), all of the factorizations (c9d) e{(5,5-72),(52, 72),(52-7, 7)} will each 
produce two distinct representations via (3) and (4). However, for (c, d) - (5- 7,5* 7), the repre-
sentations given in (3) and (4) are identical as c = d. Thus, we obtain 

4900 = 7(616) - 7(608) = 7(982) - 7(977) = 7(142) - 7(102) = 7(208) - 7(183) 
= 7(124) - 7(75) = 7(115) - 7(59) = 7(703) - 7(696) = 7(157) - 7(122). 

We now use Theorem 2.1 to deduce that all triangular numbers greater than unity cannot be a 
perfect cube. To achieve this end, the following two technical lemmas will be required, the first of 
which gives a necessary and sufficient condition for a positive integer to be a triangular number. 

Lemma 2.2: An integer M greater than unity is triangular if and only if out of the D-1 distinct 
representations of M - T(x)-T(y'), with | x - j / | > 1, there exists one in which y - 0. 

Proof: Clearly, if M=T(x)-T(0) for some x e N , then M is triangular. Conversely, 
assume M is a triangular number. To show there exists a representation of the above form, with 
y - 0, it will be sufficient to find a factorization ah = 8A# such that the system of equations in (1) 
has a solution (X, 7) with 7 = 1. From the general solution 

this is equivalent to finding positive integers a, b which simultaneously satisfy b-a-2 and 
ab = SM. Solving for b in terms of a from the first equation and substituting the result into the 
second, one finds upon simplifying that 0 = a2 4-2a-8M. Hence, a = - l W l + 8M; however, 
this must be a positive integer since 1+ 8M is a perfect square greater than unity. Consequently, 
b = 2 + a is also a positive integer. • 

Lemma 2J: If c is an odd cube greater than unity, then neither (c + l) /2 nor ( c - l ) / 2 can be 
perfect cubes. 

Proof: To demonstrate the result, it is equivalent to show that the diophantine equations 
X3 - 2Y3 = 1 and X3 - 273 = -1 have no solutions (X, 7) with X > 1. By Theorem 5 of [2], we 
have that x3+dy3 = 1 (d>\) has at most one integer solution (x,y) with xy^O. Now, since 
(x, y) = (-1,1) is such a solution of x3 + 2y3 - 1, it can be the only one with xy * 0. Making the 
substitution X = x, 7 = -y, we deduce that (X, 7) = (-1, -1) is the only integer solution X3 -
2Y3 = 1 while, if we take X = -x, Y = y, then (X, 7) = (1,1) can be the only integer solution of 
X3 - 2Y3 = - 1 . Hence, in either case, no other integer solutions (X, 7) exists where X > 1. • 
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Combining the previous two lemmas, we can now prove the desired result, which is stated 
here in terms of the solvability of a diophantine equation. 

Corollary 2.1: The only solutions of the diophantine equation x(x +1) = 2y3 are given by (x, y) = 
(1,1), (-2,1), (-1,0), (0,0). 

Proof: Note that, as x(x + l) > 0 for all x e Z , one may assume, without loss of generality, 
that x and y are positive integers. We shall first establish that no integer solution (x, y) exists for 
x > 1. To this end, let M be a triangular number greater than unity and assume it is a perfect cube. 
In order to derive the necessary contradiction, we will show that all of the D-\ representations 
of M - T(x) - T(y') have y' ^ 0, which is in violation of Lemma 2.2. Now, since M = 2m(2n +1) 
for some « G N \ { 0 } and /MGN, 2m and 2w + l must be perfect cubes because (2m,2n + T) = 1. 
Considering the representation given in (2), suppose yf = 0, then either n-2m or n-2m-\. 
Taking n = 2m = 73 > 1, we then have 2n +1 = 273 +1 = X3 for some I G N \ { 0 } , which is impos-
sible by the argument used to establish Lemma 2.3. Similarly, if n = 2m - 1 , then 2n +1 = 2Y3 -1 = 
X3 for some X e N \ {0}, which again is impossible. Hence, for the representation in (2), y' ^ 0. 
Writing now M = 2mcd, where c * 1, 2w + l and setting y' = 0 in the representation given in (3), 
we must have either 2"W = ̂  or 2"W = £=i-. Multiplying both sides of these equations by c, one 
deduces M-T{c) or M = T(c-l). Now, since ( c , ^ ) ^ ! and (c,-e=i) = l,we conclude that 
either c and ̂  or c and ̂ ~ are a pair of perfect cubes; a contradiction by Lemma 2.3. Thus, for 
the representation in (3), yr ^ 0. By setting y' = 0 in the remaining representation given in (4), 
one can similarly arrive at the contradictory conclusion that either d and —^ or d and - ^ are a 
pair of perfect cubes. Thus, for the representation in (4), y' * 0. Consequently, via Lemma 2.2, 
M is not a triangular number; a contradiction. Therefore, M cannot be a perfect cube and so 
x(x + l) = 2y3 has no integer solutions (x,y) with x > l . The solutions indicated can now be 
found upon inspecting the solvability for the remaining integers x e [-2,1]. D 

Remark 2.2: The above argument could be applied in exactly the same manner to investigate the 
solvability of the diophantine equation x(x + l) = 2y" for n>4, provided one could ascertain for 
each such n the solvability of Xn - 27" = ±1 in integers (X, 7). 

In conclusion, we consider some further consequences of Theorem 2.1. The first of these 
gives a necessary and sufficient condition for a positive integer to be an odd prime and follows 
directly from the fact that a number p e N is an odd prime if and only if D = 2. 

Corollary 2.2: An integer p e N \ {0} is prime if and only if NA(p) - 1. 

In connection with the representation of primes as a difference of the polygonal numbers of 
order k = 6, namely, the hexagonal numbers, we have the following. 

Corollary 2.3: Let / ? G N \ { 0 } be a prime number. If p = 1 (mod 4), then there exists exactly one 
representation of p as a difference of hexagonal numbers, while no such representation exists if 
p = 3 (mod 4). 

Proof: By definition, the w* hexagonal number is equal to T(2n-l). Thus, the problem of 
representing an integer as a hexagonal number difference is equivalent to finding a triangular num-
ber difference T(ml)-T(m2)9 where both ml andi^ are odd integers. For a prime/?, the only 
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possible triangular representations are those of the form given in Case 2 Subcase 1; that is, if 
/? = 2°(2#i + l) for some «eN\{0}, then p = T(l+n)~T(n-l). Now, If p = \ (mod 4), then 
clearly 2|/i, and so both l+n and n-l are odd Integers. However, for p = 3 (mod 4), one must 
have n = 2s+1 for some 5 G N \ { 0 } ? and so 1 + n and n-l are even integers. • 

Clearly, in comparison with the triangular case, a larger subset of Z \ {0} fails to have a repre-
sentation as a difference of hexagonal numbers. Consequently, In view of this, one might consider 
the following conjecture. 

Conjecture 2.1: Denote the /1th polygonal number of order k by Pk{n) and consider the set Ak = 
{M e Z \ {0}: M - Pk(n^) - P^r^) for some nl7 n^ e N}. Does the set Inclusion Ak+l c; Ak hold 
for all k = 3,4,..., and, if so, Is f)t=3 Ak * 0? 
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