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1. INTRODUCTION 

The nxn Hilbert matrix is the n x n matrix whose (/, j)-entry is j^p\. In [1], Man-Duen 
Choi explores many fascinating properties of the Hilbert matrix, including the fact that the (/, j)-
entry of its inverse is 

•»-c-r'<w-i)(\VX"#,X,*-72)' (1) 

Choi asks what sort of coincidence it is if the inverse of a matrix of reciprocals of integers has 
integer entries. In this paper we show that the inverses of the Hankel matrices based on the 
reciprocals of the Fibonacci numbers, the reciprocals of the binomial coefficients (*%'), and the 
reciprocals of the binomial coefficients (/+3+2) all have integer entries. We also find formulas for 
the entries of the inverses of these matrices and related matrices. 

Definition 1.1: Let {ak} be an integer sequence with ak ^ 0 for k > 1. A reciprocal Hankel 
matrix based on {ak} is a matrix whose (7,7)-entry is IIai+j_x. We denote the n x n reciprocal 
Hankel matrix based on {ak} by R„(ak). 

The formula for the entries of the inverse of R„(Fk) bears a striking resemblance to the for-
mula for the entries of the inverse of the Hilbert matrix. Therefore, we call a reciprocal Hankel 
matrix based on the Fibonacci numbers a Filbert matrix. 

2. FILBERT MATRICES 

We need the Fibonomial coefficients to describe the inverse of the Filbert matrix. See [2] for 
more information on the Fibonomial coefficients. 

Definition 2.1: The Fibonomial coefficients are 

where n and k are nonnegative integers. 

Theorem 2.1: Let e(n9i, j) = n(i + j + l) + (2) + (J
2) + l? and let W(n) be the nxn matrix whose 

(/,y)-entryis 

Then the n x n matrix W(n) is the inverse of the Filbert matrix ^(F^, and W(n) is an integer 
matrix. 
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This theorem is a special case of Theorem 2.2, which we prove below. The formula for the 
entries of the inverse closely corresponds to the formula for the entries of the inverse of the nxn 
Hilbert matrix. It results from (1) by changing all binomial coefficients to Fibonomial coefficients 
and changing the exponent of - 1 . The pattern of the signs of entries the inverse of R„(Fk) is that 
they are constant on 2 x 2 blocks, and alternate between blocks. 

The Fibonacci polynomials fn(x) are defined by /0(x) = 0, fl(x) = l9 fn(x) = xf„_l(x) + 
fn-iix) for ^ > 2. We also use fn to denote the Fibonacci polynomial f„(x), especially when we 
want to reduce the clutter in some equations. The x-Fibonomial coefficients are the obvious gen-
eralization of the Fibonomial coefficients. 

Definition 2.2: The x-Fibonomial coefficients are 

where n and k are nonnegative integers. 
To form the (i, 7)-entry of the inverse of R„(fk(x)), replace each Fibonacci number and 

Fibonomial coefficient in W^{n) with the corresponding Fibonacci polynomial and x-Fibonomial 
coefficient. 

Theorem 2.2: Let V(n) be the n x n matrix whose (1, j)-entry is 

Then the n x n matrix V(n) is the inverse of the Filbert matrix i^C4(x)), and the entries of V(n) 
are integer polynomials. 

The recurrence 

shows that the Fibonomial coefficients are integer polynomials, which implies that the entries of 
V(n) are integer polynomials. 

3. TECHNOLOGY 

The proof of Theorem 2.2 and proofs of succeeding theorems amount to proving various 
identities involving sums of products of Fibonomial coefficients and binomial coefficients. We 
supply computer proofs of these identities. In some cases, the computer cannot do the entire 
proof directly, and human intervention is required to separate the proof into smaller pieces that 
can be done by computer. 

The program and packages used to produce the proofs for this paper include Maple V 
Release 5, the Maple package EKHAD written by Doron Zeilberger, and the Mathematica package 
MultiSum written by Kurt Wegschaider. EKHAD is described in [3] and is available through the 
web site www.math.temple.edu/~zeilberg. MultiSum is described in [4] and is available through 
the web site www.risc.uni-linz.ac.at/software/. The particular functions that we use from these 
packages are z e i l from EKHAD and FindRecurrentce from MultiSum. 
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Both of these functions find a telescoped recurrence for a summand F(n, k), where k is the 
summation variable. The function z e i l uses Zeilberger's algorithm to find a rational function 
R(n, k) and a recurrence operator P(n, N), where Nis the shift operator in n such that 

P(n9 N)(F(n, k)) = R(n, k + l)F(#i, * +1) -R(n, k)F(n, k). (2) 

Let f(n) be the unrestricted sum HkF(n,k). In many situations, equation (2) implies that 
P(n, N)f{n) = 0, making it easy to verify that / («) is constant. 

The function F indRecur rence gives similar results with summands of the form F(n, k), 
where n and k are vectors. 

Maple V Release 5 also includes an implementation of Zeilberger's algorithm as the function 
s u m r e c u r s i o n of the package sumtools . However, s u m r e c u r s i o n only gives the recur-
rence operator P(n, N), and not the rational function R(n, k), which will be essential when we 
prove identities involving a restricted sum. 

The sums involved in the proof of Theorem 2.2 are of products of Fibonomials not binomials, 
so these procedures do not apply. However, we obtained recurrences for sums of products of 
Fibonomials by modifying recurrences found by these procedures for the corresponding sums of 
products of binomials. 

4. PROOF OF THEOREM 2.2 

The (/, m)- entry of the product V{n)Rn{fk{x)) is p(n, i, rri) - Ey=1-P(w, /, m, j ) , where 

The summand satisfies the following recurrence relation that is related to a recurrence produced 
by F i n d R e c u r r e n c e for an entry of the product of the Hilbert matrix and its inverse. 

Lemma 4.1: The summand P(n, i, m, j) satisfies the recurrence relation 

-fci+ifn+i-iiPfaf' !> m> J) ~P(p-\i-\ m, j)) 
+ (-iy+if^(P(nJ,mJ)-P(n-lJ^mJ)) = 0, 

and the sum p(n, /, m) satisfies the recurrence relation 

(4) 
+ {-\y™£x{p(p,i,m)-p(n-\,i,m)) = 0. 

Proof: Write each of the terms in (3) as a multiple of P{n -1, i -1, m, j) to get the equation 

-fn-i+]fn«-2(p(n>l" *> m> j)~P{n~\ i ~ 1, m9 j)) 
+ (rVrfUnn, U m, j)-P(n -1, i, m, j)) (5) 

- M(n9 i, j)P(n - 1 , i - 1 , m, j), Jn+i-2 

Jn-i+lJn-jJi+j'-l 

where 
M(n9 J, j) - (- l) f ' +V,+/Vw + /-JW-2 +fn-ifn-jfi+j-2 

+ V V JnH-2Jn+j-\Ji+j-l+Jn-i+h/n-jJi+j-l' 
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It suffices to show that M(nJ,j) = Q. But this follows from the standard Fibonacci identities 
fn-ifi+j-2+ fn-i+lfi+j-l = fn+j-l a n c ^ fn+i-lfi+j-l ~ fn+i-lfi+j~2 = (~ty1+J fn-j- ^ 

If we can establish p(n91,1) = 1, p(n9 1, iw) = 0 if iw * 1, and p(n, n,ri) = l, then (4) shows that 
p(n9i9m) = lifi = m and p(n9i9m) = 0 ifi*m, for 1 <i9rn<n. 

Case p(n31, m). The summand P(n9 1, AW, j) satisfies the recurrence 

(- i r 7 n - i / ^ ^ , 1, w - 1 , j ) - fJn.m+lP(n -1,1, AW - 1 , j) 

+ (-iTfn-lfn+n-lPin, \ ^ i ) + / J U A " " 1, U **, J) = 0, 

and this implies a similar recurrence for p(n, 1, AW). The proof of (7) is similar to the proof of 
Lemma 4.1. The initial values of this recurrence are p(m,l,m) and p(n,\,l). The summand 
P(m9 1, m9 j) satisfies the recurrence 

(-ir/mfm-iPfa L«, / ) = GM J +1) - G,(/», y) 
where G^AW, y) = (-1)-7"1 fjfj-_lP{m9 1, m9 j). Since the support of Gt is 2<j< m9 this equation 
implies that {-X)m fmfm_lp(m9 1, AW) = 0. Therefore, when AW > 1 we get p(m,1, AW) = 0. Finally, the 
summand P(w, 1,1, j) satisfies 

(~l)"f„2P(n, 1,1, j) = G2(», 7 +1) - G2(n, j), 

where G2(n9 j) = (-l)J~lf?P(n, 1,1, j). In this case, the support of G2 is 1 < j <n9 so summing 
overy from. 1 to n gives (-l)nf^p(n9 1,1) = -G2(AI, 1) = (-l)"//?* implying p(n, 1,1) = 1. 

Case p(n, w, if). The summand P(n, n9 n, j) satisfies the recurrence 
P(n +1, ii +1, H +1, j ) - P(w, w, if, j) = G3(n9 j +1) - G3(if, j \ 

where 
\2 

^^>)=(-1)^^(^+^-1)")((^7+
1l))x((,,) 2/1-1 11 ((n + j-2 

When we sum over j , the right-hand side telescopes to 0 and the left-hand side is p(n + l,n + \, 
n +1) - p(n, n, n). This completes the proof of Theorem 2.2. 

5. RECIPROCAL HANKEL MATRICES BASED ON 
BINOMIAL COEFFICIENTS 

In this section we will prove that certain reciprocal matrices based on binomial coefficients 
have integer entries. We will give formulas for the entries of the inverses of these matrices. 

Let a t =(*£') • 

Theorem 5.1: Let A(ri) be the n x n matrix whose (/', _/')-entry is 

w-|(-irM(;-+iX"-tX'+*"1X'**)i-
Then 4y(w) °ls a n integer, and A(n) is the inverse of the matrix R„{ak). 
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Proof: First, we show that Aij{n) is a n integer. We use the well-known fact that, if a is even 
and b is odd, then (£) is even. If/ is even, then obviously Aij{n) ls a n integer, so assume that / is 
odd. Now, if k is also odd, then (1+

k
k) is even, so we may assume that k is even. Now, one of 

O ^ d (,^) ^ even. 
Theorem 5.2 below shows that A{n) is the inverse of the matrix Rn{ak). D 

Let bk = bk(r) be the binomial coefficient (k+^~l). Suppose that r is a positive integer and 
r > 3. Then the inverse of ^(b^r)) does not always have integer entries, but the values of n for 
which the inverse does have integer entries seem to occur periodically. Further, when the entries 
are not integers, the denominators are divisors of r. The following conjecture is true for n < 20, 
r < 10, and r an integer. 

Conjecture 5.1: Suppose that r is a positive integer. The inverse of the matrix i^(^(r)) has 
integer entries if and only if n = 0 (mod q) or n = 1 (mod q) for all prime powers q that divide r. 

We do have an explicit formula for the entries of the inverse. 

Theorem 5.2: Let B(n, r) be the n x n matrix whose (/, j) -entry is 

Then B(n, r) is the inverse of the matrix R„(bk). 

The theorem is valid if r is an indeterminate, not just if it is a positive integer. Also note that 
Bjj(n,l) simplifies to aij9 the (i,j) -entry of the inverse of the Hilbert matrix, and JB^(«, 2) is 
equal to A^iri). 

Proof: Let 

2 TTr-3 ; (n + k+r-2Yny2Ylr
l:oi + j + I 1 

so that h(n, /, w) = Z"=1 Z£=o H(n9 /, w, j , £) is the (/', m)-entry of B(n, r)i^(A^). Then H satisfies 
the recurrence 

n2{i-m + r- \){n-i+r - \){n+i' + r -3)H(n-1, i-\m-\ y, k) 
- n2(i-m-l){n-i+r- l)(n + i + r- 3)H(n -1, / - 1 , w, y, &) 
+ ^2( i - 1 ) 2 ( / - /w +l) jy( / i - 1 , /, m -1, j , &) 

- w2(/ - l)2(i - m - r + l)H(n -1, /, m, j , k) 
- {n + r-2)2{i-m + r-\){n-i + l)(/i + / -l)i?(/i,/-1,/w-1, j , k) /g\ 
+ (w+r - 2)2(i - m- \){n~i + l)(w+/ - l)#(w, i - 1 , w, J , k) 
-(n+r-2)\i-l)\i-m + l)H(n9i,m-lJ9k) 
+ (n + r- 2)2(i ~l)2(i-m-r + l)H(n, /, /w, j , it) = 0. 
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The preceding recurrence was found by FindRecurrence. The theorem will follow if we 
can establish the correct values of A(w, 1, m), h(n, n,if), and h(n, z, 1). 

Case h{n, % m). Maple computes h(n, 1,1) = 1, and it computes 

Hfa 1, m, j) = £ H(n, 1, m, j , k) = K } AJ Aj). 
£=0 r{ r ) 

Now h(n, 1, m) = Zy- H^n, 1, m, j)9 and with /^(w, 1, m, j) as input, the function s u m r e c u r s i o n 
gives the recurrence (if - l)(w - 2 + iw + r)A(if, 1, m) - (n + r - l)(w - m)h(n -1,1, iw) = 0, and Maple 
gives the initial value h(m, l,m) = 0 for #w > 1 

Case h(m9 #t, «). Maple computes 

k=0 r{ r ) 

Similarly to the previous case, sumrecu r s ion gives the recurrence h(n,n,ri)-(n-l,n-l, 
n -1) = 0 and, obviously, /i(l, 1,1) = 1. 

Case h(m?i91). We need to do something different in this case. First, we show that our 
conjectured inverse is symmetric. Let 

so that By(n, r) = Z£lo S(n, z, j , k). Now z e i l produces the recurrence 

S(n +1, /, j , *) - S(n, /, j , *) = T(/i, i, j , * +1) - T(n, /, j , A) 
where 

(w + r -1) (if -1 + l)(w - A +1) 

This implies that 2 .̂ (if +1, r) - 5 (̂if, r) = /'(if, /, j , j) - T{n, /, j , 0). Now Maple tells us that 

T(n91, J, j) - T(n9 i, j , 0) - T(n9 j , /, /) + 7(if, j , z, 0) = 0, 

which means that 2̂ .(if +1, r) - 5 .̂ (if +1, r) = Î -(/f, r) - 2̂ ,. (if, r). Maple also tells us that 

(n+iY~2)i(n + i+r-3)\r(2-r)T(2-n-i-r)(-iy 
Bm(n,r)-Bm(n,r) = r(if+i-l)!(/ + r - 2 ) ! r ( 2 - i f - r ) r ( 2 - / - r ) r ( l - / y 

which implies 23>.w(if, r) - Bni{n9 r) = 0. 
Since R„(bk) and B{n9r) are symmetric, the (1,/)-entry of Rn(hk)B(n,r) equals the (/, 1)-

entry of 2?(if, r) R„(bk). The former is Zy=1 Z^ii ^(w>', 2, *), where 

U(nJJ,k) = \j + r
r
 l) S(n,j,i,k). 

The function z e i l produces 
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which satisfies 

Then we have 

Yin,i, j,k) = f " ^ U^r-Vu(n,i, j,k) 
(n+r - iy(n - j + l)(n - k +1) 

U(n +1, /, j , k) - U(n, i, j , k) = Y{n, i, j , k +1) - Y(n, i, j , k). 

§ U{n +1, /, 7, k) - g £/(», /, y, *) = 7(«, /, j , /) - 7(», /, j , 0), 
J f c = l A r = l 

and Maple tells us that Z"=1 Y(n, f, j , i) - Y(n, z, 7,0) = 0. All that remains is to check the initial 
value Zy=i lL'k=i U(i, z, 7, k) - 0. Maple also tells us that 

Y YlUi i i /A = T(l-r)T(2i-r)T(2i+r + \)T(2i+r-1) (-1)' 
£i£i "/' ' r(-r-ifr(i+r+ifr(i+r) (/-i)r(-/)' 

which implies that T!J=l E^ i C^O",', 7, k) = 0 when / > 1. D 

We consider reciprocal Hankel matrices based on one more sequence of binomial coeffi-
cients. Let ck = (ki3). 

Theorem 5.3: Let C{n) be the n x n matrix whose (z, j)-entry is 

C^)-2.(-l) [/ + * + i^/ + * + iJ|k ,- J[ ,- J - 1 — . 
Then Cy(«) is an integer, and C(>2) is the inverse of the matrix RJf^. 

Proof: First, we show that each surnmand of the sum that defines each entry is an integer. It 
is well known that, if a = 0 (mod 3), b = 1 (mod 3), and c = 2 (mod 3), then (£), (*), and (b

c) are 
all divisible by 3. Using this fact, we find that one of the terms (/+f+1), C"}*), or z is divisible by 3 
unless i = l (mod 3) and & = 0 (mod 3). But now n+i + 2 = n (mod 3), w+t + l = « + l (mod 3), 
and i -f A: +1 = 2 (mod 3). Thus, 3 divides one of the terms (Jl^i) or (££#). 

The proof that C(n) is the inverse of R„(ck) is similar to the proof of Theorem 5.2. Let 

^^/*)=(-o^(r:^)(7;f;I
iX'+i+i)('^)|ta. 

so that z(n9 z, m) = Z"=1 Zi=0 Z(w,*, wi, 7, £) is the (i, /u)-entry of C(w) i^(%). Then Z satisfies the 
recurrence 

(/i-/ + l)(w+i + iXZ(w-l,/-l ,/if,7,*)-Z(/i,i-l ,m,7,*)) 
+ /(/ - l)(Z(w - 1 , i, w, 7, i ) - Z(w, /, m, 7, A:)) = 0. 

Now the proof proceeds similarly to the proof of Theorem 5.2, except that we do not have to do 
the difficult initial value m = 1. • 

One might wonder whether there is not a simpler formula than the one we give for BJn, r). 
If we fix / and 7 and consider Btj as a polynomial of w, then it usually has an irreducible factor of 
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degree min{2/-2,2j-2}. Thus, it seems unlikely that one could avoid the sum in the given 
formula. The next section suggests that the given sum is the "right" way to describe Br(n, r). 

6„ RECIPROCAL HANKEL MATRICES BASED ON 
FIBONOMIAL COEFFICIENTS 

Remarkably, by changing the exponent of -1 and changing the binomial coefficients to Fibo-
nomial coefficients in the formula for Bij9 we get a formula for the entries of the inverses of recip-
rocal Hankel matrices based on Fibonomial coefficients. 

Let dk = dk(f) be the Fibonomial coefficient ((^+
r
r_1)). 

Conjecture 6.1: Let D(«, r) be the n x n matrix whose (/, 7)-entry is 

^=^<".--)=i(-i)*'-"(("+'r"2))((")) 

Then the D(n, r) is the inverse of the matrix Rn(dk). 

We have verified this conjecture for w<16 and r<10. (We assume that r is a positive 
integer.) We also observe that the inverse of a reciprocal Hankel matrix based on Fibonomial 
coefficients has integer entries exactly when the corresponding reciprocal Hankel matrix based on 
binomial coefficients has integer entries. This may just be a consequence of known divisibility 
properties of the Fibonomials. It seems likely that this conjecture may be proved by combining 
the methods of the proofs of Theorem 2.2 and Theorem 5.2, and that it may be extended to the 
corresponding sequence of x-Fibonomial coefficients. 
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