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1. INTRODUCTION 

In this paper we shall be concerned with Chebyshev polynomials of the first kind, defined by 
(see [2], [7]) 

Cn+l(x) = xCn(x)-C„_l(x) (LI) 
with 

Up to n = 5, we have 

C0(x) = 2, Cl(x) = x. (1.2) 

Q(x) = 2, 
Q(x) = x, 
C2(x) = x2-2, 
C3(x) = x3-3x, 
C4(x) = x4-4x2+2, 
C5(x) = x5-5x3+5x. 

Generalized Chebyshev polynomials of the first and second kind (in the quasiperiodic sense) 
were obtained by Dotera [5] and by Suzuki and Dotera [12] in a study of a second-order Fibo-
nacci chain. They obtained self-similar polynomials that contain a parameter r which gives the 
intensity of quasiperiodicity. When r = 1 (a periodic crystal), the polynomials coincide with 
Chebyshev's polynomials whose degrees are the Fibonacci numbers (1, 2, 3, 5, 8, 13, 21, ...). 
Another work by Clark and Suryanarayan [4] considered Chebyshev polynomials of the second 
kind associated with quasiperiodic tilings of the plane. Here we consider the divisibility by primes 
of coefficients of Chebyshev polynomials of the first kind. 

In the proofs, we shall make use of binomial coefficients. Divisibility of binomial coefficients 
by primes has been considered elsewhere (e.g., [1], [6]-[12], [14]-[16]). We also prove that, if 
the degree of the Chebyshev polynomials is an odd number, then the coefficient of the second-
degree term is a perfect square. 

2. COEFFICIENTS OF THE CHEBYSHEV POLYNOMIALS 

If we consider equation (1.1) with initial condition C0(x) = a, a e Z , and Q(x) = x, we have 
the following array for the coefficients of Chebyshev polynomials Atj,, n > 1: 
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q(x) 
C2(x) 
Q(x) 
Q(x) 
C5(x) 
Q(x) 
C7(x) 
Q(x) 
C9(x) 

QoW 
QiW 
C12(x) 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

a 
a + 1 
a + 2 
a + 3 
a + 4 
a + 5 
a + 6 
a + 1 
a + 8 
a + 9 
a + 10 

a 
2a-fl 
3a + 3 
4a+ 6 

/5a+ 10 
\6a + 15 
7a + 21 
8a+ 28 
9a+ 36 

a 
3a+ 1 
6a + 4 \ 
10a+ 10/ 
J15a + 20| 
21a+ 35 
28a+ 56 

a 
4a+ 1 
10a + 5 
20a+ 15 
35a + 21 

a 
5a+ 1 
15a+ 6 

(2.1) 

a 

In the array (2.1), if we define a 2x2 matrix as indicated, the sum of elements of the main 
diagonal gives an element of the next row of the array, that is, 

4-4-2 ,y- i + 4-w- (2.2) 
For example, for the indicated matrix, we have 

(5a + 10) + (10a + 10) = 15a + 20. 

Consider the Pascal triangle: 

s 
Cn(x) 

33 6 
35 21 

1 1 1 56 70 56 

1 
7 
28 

1 
8 1 

CD [9] 36 84 126 126 84 36 9 1 

Diagonals as indicated above are named ascendant diagonals of the Pascal triangle. The sum of 
the elements of ascendant diagonals are the Fibonacci numbers (1,2,3,5,8,13,21,...) (see [13]). 
Here we are interested in two adjacent ascendant diagonals. If we compare the row of Cn(x) of 
the array (2.1) with the two indicated ascendant diagonals of the Pascal triangle (inside of a box), 
we see that each element of the array (2.1) is equal to the sum of pairs of elements of the Pascal 
triangle (inside of boxes) with the first one multiplied by a {a = 2). 

3. DIVISIBILITY BY PRIMES OF THE COEFFICIENTS OF CHEBYSHEV 
POLYNOMIALS OF THE FIRST KIND 

We establish the following facts about the coefficients of the Chebyshev polynomials of the 
first kind. 
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(a) If n e N is a prime number, then n divides all the coefficients of C„(x) except the first one. 
(b) If n is an even number, then the coefficient of the term of power 2 is a perfect square and its 

square root is nil. 
(c) If n = pq, where p and q are prime numbers (p > q > 2), then 

q 

I Q(*)-I<V^ , A odd. 

(d) lfn = 2p, where p is a prime, then 

p\[Cn{x)-x»±2]. 

(3.1) 

(3.2) 

4. PROOFS OF THE RESULTS 

We will prove "closed formulas" that generate the polynomials we are studying in terms of 
binomial coefficients. These formulas are useful in order to calculate the coefficients without 
using a recursive method which is very slow. 

Lemma 1: We have the following. For n>l, the polynomials C„(x) with C0(x) = a, a e ? , 
Q(x) = x, and Cn+l(x) - xCn(x) - Cn_x{x) can be expressed by the formulas: 

«±i 

if n is odd; and 
w='+±[(z:$Mr-i] ^f2{k-\)^_^Jc-\ ^ 

j*-2{k-\)(_x\k-\ {-If 

if n is even. 
Proof: For n = 1 and n = 2, it is obvious since Q(x) = x and C2(x) = x2 -a. Suppose that 

the expression is true for all k < n and n is even. Let us show that it will also be true for n +1. In 
view of Cn+l(x) = xCn(x) - Cn_x{x)y we have 

Cn+l(x) = xX" + z[(jcZtya + (jc-_\ x«-2(&-i)+i/__ jyfc-i 

-\t[("*--M";-fc=2 

f+1 

- 1 - * «- l -2(&-l ) / i \ fc - l (-1)* 

=^l(r-*M"^) fc=2L 

f 

xn-2(*-l)+l/ j \ * - l 

--\t (rXV-i*) fw-2(Jk-l)+l/ j\ife-l 

= xn+l - xn~l - [a + (n - 2)xn~l] + £ [ Ai+5]xw-2(^1)+1(-l)^1, 
*=3 

where 
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A = n-k 
k-2 

n-k 
k-3 and B- n-k 

k-\ 
So 

(«+!)+! 

C„+I(x) = x- + ± fntll;k)a^nfl-k) 

n-k 
k-2 

n-2(k-l)(_nk-l (~lf 

by the Stiefel formula. 
Hence, the expression is true for n +1. In the same way, we prove for n odd. Therefore, by 

induction, we obtain the result. • 
Note; In the above lemma, it is clear that we have considered the convention ( ^ ) = 0 when 
* = f + l. 

We now state a theorem about divisibility of the coefficients of the polynomials 

where CQ(x) = 2, Q(x) = x, and Cn+l(x) = xCn(x) - Cn_x(x). 
By Lemma 1, we see that: for n even, Q = 0 for all i odd and Cj - ±2; for n odd, Q = 0 for 

all i even. 

Theorem 1: If s|n and gcd(s,/') = 1, then s\Cl
n. 

Proof: By Lemma 1, we have that 
w(w - &)! 

(*-l)!( / i -2* + 2)! 
for some k. Since the case when / = 0 is trivial, we will deal with i - 1,2,..., n. Thus, 

" n-2k + 2 n-2k + 2 i ' 
since 51« and / = n - 2k + 2. But, by hypothesis, s and i are relatively prime, and this implies that 
s\C>. D 

Corollary 1: Ifn e IM is prime, then w|Q, i = 0,1,..., w-1 . 

Corollary 2: If w e N andp is a prime such that /?| n and p | i , then p \ Cl
n for all i = 0,1,..., n. 

Corollary 3: If n is of the form n-lp, wherepis a prime, then p\Cl
n9 i = 1,2, . . . ,w-l . 

Comllmry 4: If w is of the form w = /2, then f | Qr. 

Corollary 5: If w e N is even, then Cw
2 = (n 12)2. 

Proof: Since Q2 = f(Jl*), where k = f, we have that 

Gf = 
Z 1 2 1 

: 2 X 2 ~ l 2 D 
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