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In our previous report [5], we developed some methods ie the study of the line-sequential 
properties of the polynomial sequences treated in Shannon and Horadam [9]. In this report, we 
work out the properties for the general case and apply them to the Pell polynomial line-sequence 
as an example. Some known results are included for completeness, but only new aspects will be 
presented in some detail. 

1. THE BASIC FORMULAS 

Recall that the linear homogeneous second-order recurrence relation is given by 
cun+bun+l = un+29 c,b*0, W E Z ; (1.0a) 

and a general line-sequence is expressed as 
\J(cJh):...,u_3,u_2,u_l,[uQ,uJ,u2,u3,u4,...yunGm., (1.0b) 

where [% t/J denotes the generating pair of the line-sequence. 

1. Basis Paii°o The basis pair for the general case, that is, without specifying the parametric coef-
ficients b and c, is given by (4.2) and (4.3) in [8]: 

Gl50(c,*):...?(c + A2)/c2,-6/c,[l,0],c,ci,c(c+fe2),..., (1.1a) 

G05l(c,5):...,(c+52)/c3,-&/c2,l/c,[0,l],6,(c + 62),.... (Lib) 

Definition 1: Two line-sequences are said to be complementary if they are orthogonal. 

Obviously, the pair (1.1a) and (Lib) are orthogonal and form a set of basis. When c = b = 1, 
they reduce to the complementary Fibonacci and the Fibonacci line-sequences, Fl0 and F0tl, 
respectively. It is clear that all the line-sequential properties of either a number line-sequence or a 
polynomial line-sequence given by the recurrence relation (1.0a) originate from the properties of 
this pair. Following are some of the main properties. 

2„ Translation* The translational relation between the basic pair is given by: 
TGl0 = cG0,h (1.2a) 

where J denotes the translation operation, see (3.1) in [8]. Let gn[i9j] denote the ifi1 term in the 
line-sequence Guj9 then, in terms of the elements, (1.2a) becomes 

«H.A0] = cgl[0,l]. (1.2b) 

3. Parity, The parity relation of the elements in Glj0 is found to be 

g-im = (~lTc-(n+l)gn+2l\0l (1.3a) 
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From (4.9) in [8], the parity relation of the elements in G0 x is given by 

«LjO,l] = (-ir1c-w&[0,l]. (1.3b) 

Applying translational relation (1.2b) to (1.3b), we get (1.3a). In the nomenclature of Shannon 
and Horadam [9], parity relation (1.3b) reduces to (1.7) in [1] for c = -1 in the case of Morgan-
Voyce even Fibonacci polynomials. 

4. Cross Relations. Combining the translational and parity relations, we obtain the following set 
of cross relations among the elements of the two basis polynomial line-sequences: 

^ [ l , 0 ] = ( - i rc -^ + 1 [0 , l ] , (1.4a) 

^ 0 1 = ̂ 4 0 , 1 ] ; (1.4b) 
or 

g-JLO, 1] = ( - l r ' c -^&N. i t l , 0], (1.4c) 
^n[0 ) l ] = c-V-(„-1)[l,0]. (1.4d) 

5. Geometrical Line-Sequences. The pair of geometrical iine-sequences relating to Gx 0 is 
given by: 

Gha(c,b):..., a2, a'\ [1, a], a2, a3,..., (1.5a) 

Glfi(c,b):...,p-2,/r\ll,/]l/]2,p\..., (1.5b) 

where a and fi are the roots of the generating equation 

q2-bq-c = 0 (1.5c) 

(ref. (1.7) in [4], with # = 0 ) . 

6. Binet's Formula. Binet's formula for the G10 basis is given by 

Gl0 = (-/3Gla+aGlfi)/(<a-P), (1.6a) 

and for the G0 j basis is given by 

G^ = (G^a-Ghp)l(a-p) (1.6b) 

(ref. (4.9) in [7]). 

7. (General) Lucas Pain Recall that the line-sequence "conjugate" to G0 j is the "general" Lucas 
line-sequence generated by [2, b], see (4.12) in [8]: 

G2J)(c,b):...,(2c+b2)/c\-b/c,[2,bl2c + b\b(3c-hb2X..., (1.7a) 

which reduces to the Lucas line-sequence L2li(c = b = l. Its complement is 

^,_2(c,£):...,% + 2 + £ W (1.7b) 
For c = b = 1, it reduces to the complementary Lucas line-sequence, 

^ _ 2 a i ) : . . . ? - 7 ? 4 , - 3 , [ l , - 2 ] , - l , - 3 , - 4 , - 7 , . . . . (1.7c) 
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The orthogonal pair (1.7a) and (1.7b) then form a "(general) Lucas basis" spanning the same 
2D space as does the basis pair G10 and G0 b but with a normalization factor (b2 +4)~1/2. 

8, Decomposition Schemes. Thus, we have the following different ways of decomposing a 
given line-sequence, G; j(c,b): The first is the "basic decomposition" resulting in the basic com-
ponent expression, see (2.9) in [8]: 

GiJ(c,b) = iGl0(c,b)+jG0A(c,by (1.8a) 

The second is the "Binet decomposition" the general formula of which is 
G,j(c,b) = [-(fii-j)Gha + (ai-j)Gi,fl/(a-fi). (1.8b) 

Note that the Binet pair Gx a and Gx $ does not form an orthogonal pair unless c = 1, see (2.8) in 
PL 

The third is the "Lucas decomposition," which produces the Lucas component expression, 
the formula of which is given by 

Gy,/c,6) = [(2/+J/)G2i4 + (W-27)G4f_2]/(ft2+4)) (1.8c) 

where the denominator accounts for the normalization factor. 
Since line-sequences Gx^y and Gy^_x are complementary, by repeated application of the 

vector addition and the scalar multiplication rules, see [8], we obtain the general orthogonal 
decomposition formula: 

G,f/c,ft) = [ ( x i > j y ^ (L8d) 

Putting x - 1 and y - - 1 , and applying the rule for scalar multiplication by - 1 , we obtain (1.8a); 
if we put x = 2 and y = b, we obtain (1.8c). 

Similarly, for an arbitrary pair of line-sequences Gx%y and Gz?w, we find 

This is the general decomposition formula. For convenience, we call GXty and GZtW the pair of 
coordinate line-sequences, and their coefficients the respective components. Putting z = y and 
w = - x , we get (1.8d); if we put * = z = l, y = a, and w = fi, we get (1.8b). Wang and Zhang 
[11] adopted a very special pair of coordinates based on their conjugation property: G0i and 
G2f£. Putting x - 0, y = 1, z = 2, and w - b, we obtain 

GUj{cM = {-{hi-2j)G,A+iG2ib\l2, (1.8Q 

which is equivalent to equation (2) in [11]. This decomposition scheme is particularly convenient 
to use in treating products of terms because of the conjugation property. 

9. Translations! Representation* By applying the translational relation (1.2a) to (1.8a), we 
obtain the translational representation of a general line-sequence in terms of the first basis, 

GUj(c, b) = (U+jc-lT)Gh0(c, 6), (1.9a) 

where ir denotes the identity translation; or, in terms of the elements, in the second basis: 

&P,7] = rf&.i[0,l]+7al[0,l]. (1.9b) 
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10. Biiiet's Product* Consistent with the multiplication of the corresponding terms in two line-
sequences to obtain their product, we present the following definition. 

Definition 2: The product of two line-sequences is defined as the product of the two respective 
Binet formulas, and shall be referred to as "Binet's Product." Also, for convenience, exponen-
tiation notation is adopted when it applies. 

Note that, except for some special cases, Binet's product does not, in general, constitute a 
line-sequence governed by (1.0a). This question will be discussed in a later paper. 

In the line-sequential format, we then have 

Gh0G0il = (^Gla+aGl^b(-cf)/(b2+4c) (1.10a) 

or, in terms of the elements, 

^a0]g„[0 , l ] = (c<?2„_1[2,*]+*(-^)")/(*2 + 4c). (1.10c) 

The conjugation of G0l and G2^ (r®f- H-7) and (4.8) in [8]) is then given by 

G0AGXb = (Gla-GlP)l{a-P) (1.10c) 

or, in terms of the elements, 

&[0,1]&[2,*] = &II[0,1]. (LlOd) 

This is the general conjugation formula relating the Fibonacci and the Lucas elements. For 
c = h = 1, it reduces to the basic conjugation relation, fjn = f2n. 

The Binet product of G10 and Gb _2 is somewhat more complex, that is, 

61.0(^2 = { I W + ̂ ^ ( U O e ) 
or, in terms of the elements, 

&D,0]sJA,-2] = c{ fc^^ (I.IOQ 

When c = ft = 1, it reduces to the more easily recognizable relation, 
/„[1,0]/„[l, - 2] = (/2n_2[2,1]- 2/2n_,[2,1]) / 5, (1. lOg) 

which is a set of even terms in the negative Fibonacci line-sequence, 
F o ^ ! : . . . ^ , - ^ ^ - ^ ! , - ! , ^ , - ! ] , - ! , - ^ - ^ - ^ - ^ . . . . (l.lOh) 

11. Summation. From the recurrence relation, it is easy to show that the general consecutive 
terms summation formula is given by 

(ft+c - 1 ) ^ ^=«%+„+«*+w+i + (* - IK-« i t + i , 0- l la) 

where i>k,n>0;i,k,n(=Z. We stress that this formula, like (4.3u) in [6], is translationally 
covariant In the harmonic case, ft = c = 1, it reduces to the latter. In the case of Jacobsthal num-
bers, it reduces to (2.7) and (2.8) in [3], respectively; in the case of Jacobsthal polynomials, it 
reduces to (3.7) and (3.8) in [2], respectively, and so forth. 
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A word about the convention. In (4.3u) in [6], the translational degree of freedom is implicit 
in that the zeroth element uQ may be assigned to any element in the line-sequence. In the current 
case, however, we want to assign the zero* element in the formula to the zeroth element of the 
line-sequence in question; for example, in the Pell line-sequence, we want to assign u0 = p0, so the 
translational degree of freedom lies explicitly in the value of the parameter k chosen. 

It is easy to show that the following two equations hold: 
k+n k+n 

(C - 1 )£ U2j + * X M2,-l = C(M2(fc+n) - «2(i-l)X (1.11b) 
i=k i=k 
k+n k+n 

(c-l)^%+i + ftSM2, = c(M2(fc+n)+l-"2fc-l)- 0-11C) 
i~k i=k 

In the harmonic case, (1.11b) reduces to the odd terms summation formula (4.4u), and (1.11c) 
reduces to the even terms summation formula (4.5u) in [6], respectively. 

Combining (1.11b) and (1.11c), we obtain the general even terms summation formula, 
k+n 
X % = KC - ^(^(k+ny+l - «2k) - bc&2(k+n)+l ~ *hk-l)\ ' KC ~ lf ~ b \ (1.11 d) 
i=k 

and the general odd terms summation formula, 
k+n 

X *2/+l = l°2 (^(k+^+l ~ «2*-l) ~ (^2(k+n)+3 ~ *hk+l)\ ' KC ~ lf ~ b ^ ' (l'llQ) 
i=k 

12. Translational Operators, By the dual relation of Section 4 in [6], corresponding to for-
mulas (1.11a) through (l.lle), we have the following set of covariant equations of the transla-
tional operators: 

k+n 

(6+c-i)X^ = crt+„ + rt+„+I+(*-i)r,-rfc+1, (1.12a) 
i=k 

k+n k+n 

(p- i ) I T2i +*>£ 4-i = c(T2(k+n) - V D ) , 0- 12b) 
i=k i=k 
k+n k+n 

(c - l )Z^ + i+6Zr a ,=c(T 2 i k + n ) + l - r 2 H ) , (1.12c) 
i—k i=k 

k+n 

E^-Kc-ix^^-^j-MV^-ui/Kc-i)2^2], (i.i2d) 
i=k 
k+n 
E T2M = [c2(T2{k+n)+l - T2k_x) - (T2(k+n)+3 - Tu+1)] I [(c -1)2 - b2]. (1.12e) 

13. Sirasonfs Formula. The general Simson formula is found to be 

gn^j}gn-ilhj]-{gn[i,j])2=(-cy-\bij+ci2-f). (1.13) 

In particular, for the general Fibonacci and the general Lucas pairs, 

&+iD,0]^,[l,0]-(gB[l,0])2 = ̂ ) V (113a) 
g„+i[0,11&J0, l]-(&[0, l])2 = -{-cT\ (1.13b) 
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gn+l[2, b]gn_x[2, * ] - (&P, h]f = (-cy-l(b2 + 4c\ (1.13c) 

gn¥l[b, -2]gn_x[h, -2]-(gn[b, -2])2 = -{-cy~\2b2 -b2c + 4). (1.13d) 

In the case of Jacobsthal numbers, (1.13b) and (1.13c) above reduce to (2.5) and (2.6) in [3], 
respectively. In the case of Jacobsthal polynomials, they reduce to (3.5) and (3.6) in [2], respec-
tively, and so forth. From (1.13), it is clear that the significance of Simson's formula lies in its 
independence of the index n, apart from a sign correction. 

2. THE GENERAL LUCAS PAIR 

The general Lucas line-sequence G2b is particularly interesting, mainly owing to its being 
conjugate to the second basis line-sequence G01. In addition to the aforementioned properties, a 
few more basic properties are given below. 

The basis component expression of G2b, according to (1.8a), is given by 
G2,b = 2Gl0+bG0tl (2.1a) 

or, in terms of the elements, 
&[2,ft] = 2&[l,0]+A&[0,l]. (2.1b) 

Substitution of the translational relation (1.2a) into (2.1a) produces the translational representa-
tion of G2b

 m terms of the first basis, 

G2fb = (2I+bc-lT)Gl0, (2.1c) 

which can also be obtained from (1.9a) by putting i = 2 and j = b. 
The basis component expression of Gb _2 is given by 

Gb,-2 = bGi,o-2GOA (2.2a) 

or, in terms of the elements, 
&[*, -2 ] = bg„[l, 0]-2&[0,1]. (2.2b) 

The translational representation in terms of the first basis is then given by 

Gbt_2 = (bI-2c-lT)GU0, (2.2c) 

which can again be obtained from (1.9a) by putting i-b and J = - 2 . 
Binet's formula for G2tb, according to (1.8b), is 

G2.fab) = Gla + Gufi9 (2.3a) 

and Binet's formula for its complement is 
^,_2(c,*) = h0ffft+2)G1>a + ( a f t + 2 ) G ^ ] / ( a - ^ . (2.3b) 

Substituting the geometrical line-sequences (1.5a) and (1.5b) into (2.3a) and noting that 
afi = -c, we obtain the parity relation of the elements in G2tb, that is, 

g-n[2,b] = (-crgn[2,b]. 

Again in the nomenclature of Shannon and Horadam [9], the parity relation (2.4) reduces to 
(1.9) in [1] for c = -1 in the case of Morgan-Voyce even Lucas polynomials. 

424 [NOV. 



SOME GENERAL FORMULAS ASSOCIATED WITH THE SECOND-ORDER HOMOGENEOUS POLYNOMIAL LINE-SEQUENCES 

Applying the cross relation (1.4a) and the parity relation (1.3b) to the component expression 
(1.13b), using the parity relation (2.4), we obtain 

gn[2,b] = 2gn+llQ,l]-bgn[0M (2.5) 

which is the general version of the basis representation of the Lucas elements (for c = h = l): 
*„ — 4/«+l ~ Jn-

Similarly, from the component expression (2.2b), we obtain 
gm[b, - 2] = bcg^JO, 1] - 2&[0,1], (2.6a) 

which is the basis representation of the complementary Lucas elements in terms of the second 
basis. Note that if we choose to express the elements in terms of the first basis, using the trans-
lational relation (1.2b), we would obtain 

gn[b,-2] = -2c-V„+1[l, 0]+bgn[l, 0], (2.6b) 

which is more symmetrical with (2.5). 

3. THE PELL POLYNOMIAL LINE-SEQUENCES 

We now apply the formulas obtained in the previous sections to the Pell polynomials and, for 
the sake of checking, we also calculate the results independently, that is, without using those 
formulas. The results are found to agree in each and every case. The order of development fol-
lows largely that of the previous sections with some minor variations. 

The Pell polynomials line-sequence is defined by b = 2x, c = l. The basic pair is given by 
P1)0(l,2x):...,-4x(H-2x2),(l + 4x2),-2x,[l,0],l,2x,(l + 4x2),..., (3.1a) 

P0J(1,2x):..., -4x(l + 2x2), l + 4x2, -2x, 1, [0,1], 2x, (l + 4x2),..., (3.1b) 

where the first one is referred to as the complementary P-Fibonacci line-sequence, or the P10 line-
sequence for short; the second is referred to as the P-Fibonacci line-sequence, or the P0l line-
sequence for short. 

Obviously, they are translationally related, in agreement with (1.2a), that is, 

2Plf0 = P0fi. (3-2a) 
In terms of the elements, this becomes 

/WiP.0] = />n[0,l]. (3.2b) 
The parity relation of the elements in Pl0 is given by (1.3 a), 

P-ntt,0] = (-l)"p„+2[l,0], (3.3a) 

and the parity relation of the elements in P0l is given by (1.3b), 

/'-„[0,l] = ( - i r 1
A [ 0 J l ] . (3.3b) 

Or, by applying (3.2b) to (3.3b), we also obtain (3.3a). 
Combining the translational relations with the parity ones, we obtain the following set of 

cross relations among the elements of the two basis polynomial line-sequences, in agreement with 
relations (1.4a) through (1.4d): 
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/ a i , 0 ] = (-l)V„+1[0,l] (3.4a) 
P-J},0] = p<n¥l)[0,ll (3.4b) 

or 
\n+l P-„[0,l] = ( - i r W l , 0 ] , (3.4c) 

P-niO,i\ = P^y^O]. (3.4d) 

From (1.5 a) and (1.5b), the pair of geometrical line-sequences relating to Pl 0 is given by 

Pla(l,2xy....,a-2,a-\[l,a],a2,a3,..., (3.5a) 

Px,p{\2xy...,pr\p-\\\,p\f?,f}\..., (3.5b) 

respectively, where a and fi are the roots of the generating equation 

q2-2xq-l = Q. (3.5c) 

By formulas (1.6a) and (1.6b), Binet's formula for Pl0 is 

PXQ = {-pPha + aPh(3)l(a-p), (3.6a) 
and for the P0l is 

Po.i = (Pua-Pifi)Ka-fi)- (3-6b) 

From (1.7a) and (1.7b), the P-Lucas line-sequence is given by 

Pi, 2*0,2x): - 2x(3 + 4x2), 2(1 + 2x2), - 2x, [2,2x], 2(1 + 2x2), 2x(3 + 4x2),.... (3.7a) 

Its complement is then 
P2,5_2(l, 2x):..., 2x(3 + 4x2), - 2(1-f 2x2), [2x, - 2 ] , -2x, ~2(l + 2x2),.... (3.7b) 

These two line-sequences are clearly orthogonal, with a normalization factor [2(l + x2)1/2]_1. 
The basis component expression for an arbitrary Pell polynomial line-sequence, according to 

(1.8a), is given by 
PUJ{\ 2x) =iPl0(l, 2x) +jP0J(l, 2x), (3.8) 

so we have, for the P-Lucas pair: 

PlixQ*2x) = 2^i,oO? 2x) + 2xP0>1(l, 2x), (3.8a) 

P2*.-2<X 2x) = 2xPl0(l3 2x) - 2P(U(1, 2x). (3.8b) 

It can be easily shown that the general formula of Binet decomposition, in the simpler appli-
cable form for the Pell polynomial line-sequences, is given by 

PiJ(l,2x) = [-i(pPha-aP1^) + j(Pla-Pl^)]/(a-P). (3.9) 
Thus, we have 

P22x(l,2x) = 2 [ - ( / ^ (3.9a) 

^ , - 2 a 2 x ) = 2 [ - x ( / ? P ^ (3.9b) 

The formula for the Lucas decomposition of an arbitrary Pell polynomial line-sequence, 
according to (1.8c), is given by 
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Pi,J(l,2x) = [(i + xj)P2,2x + (xi-j)P2x,_2]/2(l + x2), (3.10) 

so the component formulas of the basis pair with respect to the Lucas bases are 

Pi,oQ,2x) = [P2,2x+xP2x>_2]/2(l + x2), (3.10a) 

P0,1(l,2x) = [xPX2x-P2x_2]/2(l + x2). (3.10b) 

The conjugation of P0l and P2b, by (1.10c), produces 

Po.A2x = (fua-fup)Ka-fi). (3.11a) 

In terms of the elements, this becomes 
pn[0,l]pn[2,2x] = p2„[0,l], (3.11b) 

which is the P-version of the conjugation relation fjn = f2n. 
The Binet product of P^ 0 and P2Xt _2? by (1. lOe), is found to be 

P1,oP2X,-2 = 2[fi(fix + l)P'a + a(ax + l)P^]/(a-^2. (3.12a) 

In terms of the elements, with afi = -l, this becomes 

pn[l,0]pr![2x,-2] = (xp2„_2[2,2x]-p2„_1[2,2x])/2(l + x2). (3.12b) 

From Binet's formula (3.9a), we obtain the following parity relation between the elements of 
the P-Lucas line-sequence (3. 7a), 

p^[292x] = (riypn[292xl (3.13) 
which apparently holds true. 

The component expression of the P-Lucas line-sequence is given by 

^2.2, = 2/lo + 2xP0tl. (3.14a) 

In terms of the elements, this becomes 
pn[2,2x]=2p„[l,0]+2xp„[0,l]. (3.14b) 

Applying (3.3b) and (3.4a) and using the parity relation (3.13), we obtain 

Pr}[2,2x} = 2pn+l[0,l]-2xpn[0,ll (3.14c) 
which is the P-version of the relation ln = 2fn+l - fn. 

Substituting the translation relation (3.2a) to the component expression (3.14a), we obtain 
the translational representation of the P-Lucas line-sequence, 

PX2x=2(I + xT)Pl0. (3.15) 

The component expression of the complementary P-Lucas line-sequence is 

^ - 2 = ^ 0 - 2 ^ , 1 . (3.16a) 
In terms of the elements, this becomes 

pn[2x, - 2 ] = 2xpn[l, 0]-2pn[0,1]. (3.16b) 

Applying parity relation (3.3b) and cross relation (3.4a), we obtain 
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pn[2x, - 2] = -2p„[0,1] + 2xpn_l[0,1], (3.16c) 
which is the complement of the relation (3.14c) in terms of the second basis. Its equivalence in 
terms of the first basis is obtained by applying the translational relation (3.2b), 

pn[2x, - 2 ] = -2Pn¥l[\0]+2x#,[l, 0], (3.16d) 

which is more symmetrical with (3.14c). 
Substituting the translation relation (3.2a) into the component expression (3.16a), we obtain 

the translational representation of the complementary P-Lucas line-sequence, 
P2x,-2 = 2(xI-T)Pl0. (3.17) 

The following summation formulas can be verified easily: 
k+n 
Z f l = [ A + » » + A + I I + I + ( 2 X " 1 ) A - A + I ] / 2 X , (3.18a) 
i=k 

k+n 

X A/-i = (ftoH-n) - A(*-i))/2x, (3.18b) 
i=k 

k+n 

Z PH = (P2(k+n)+l ~ Plk-l) / 2X. (3.18C) 

Formulas (1.11b) and (1.11 c) in the general case reduce to (3.18b) and (3.18c), respectively. 
The dual relation then gives the corresponding operators equations of translation: 

k+n 

HTl=[Tk+n + Tk+n+l+(2x-i)Tk-Tk+l]/2x, (3.19a) 
i=k 

k+n 

I?/-I = (V)-VD)/ 2* ' <3-1 9 b) 
i=k 

k+n 

Z 4 = (^ + n ) + i -^ - i ) /2x . (3.19c) 
For example, let k = -3 and n = 5, then the left-hand side (l.h.s.) of (3.19a) gives 

(k+n \ 

\i=k J 

and its right-hand side (r.h.s.) gives [T2 + T3 + (2x - l)T_3 - ZL2] fl[0,1]/ 2x = 3 + 4x2; hence, l.h.s. = 
r.h.s. 

Simson's formulas for the Pell polynomial line-sequence are found to be: 

fl»iP, OJ/ViU 0]-(pn[l, 0])2 = ( - l r 1 , (3.20a) 

/WifO, 1]/Vi[<>, 1]-(PJP, l])2 = (-1)", (3.20b) 
pn+l[2,2x]pn_l{2,2x] - (p„[2,2x])2 = (-l)"-x(4)(l + x2), (3.20c) 
pn+l[2x, -2-\Vn_i2x, -2]-(p„[2x, -2])2 =(-l)"(4)(l + x2). (3.20d) 

For example, let n = -1 in (3.20d), then l.h.s. = r.h.s. = -4(1 + x2). 
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Remark: A number of specific problems in this work need to be addressed. For example, as of 
this writing, we have not yet found the parity relation of the elements in Gb^_2, as compared to 
those in G2tb, see (2.4). Also, as far as this author is aware of, the relation (3.12b) does not seem 
to relate to any known line-sequential relation, in contradistinguishing to relation (3.11b), which 
relates to the well-known conjugation relation fnln - f2n. It is also interesting to see, as is pointed 
out by the referee, that viewing from the bigger picture, so to say, how this piece of 2D work 
relates to the work in the 3D case, as, for example, in the context of [10]. 
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