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L INTRODUCTION 

Functions defined by Dirichlet series J^=l a/fs are Interesting because they often code and 
link properties of an algebraic nature in analytic terms. This is most often the case when the coef-
ficients an are multiplicative arithmetic functions, such as the number or sum of the divisors of w, 
or group characters. Such series were the first to be studied, and are fundamental in many aspects 
of number theory. The most famous example of these is undoubtedly g(s) = S*=i n~s (Re(s) > 1), 
the Riemann zeta function. Initially studied by Euler, who wanted to know the values at the posi-
tive integers, it achieved prominence with Riemann, who clarified its intimate connection with the 
distribution of primes, and gave it lasting notoriety with his hypothesis about the location of its 
zeros. 

Another class of Dirichlet series arises in problems of Diophantine approximation, taking an 

to be the fractional part ofnO, where 0 is an irrational number. Their properties depend on how 
well one can approximate 9 by rational numbers, and how these fractional parts are distributed 
modulo 1. The latter is also a dynamical question about the Iterative behavior of the rotation by 
angle 0 of the unit circle. Such functions were defined and studied by Hardy and Littlewood in 
[3], and also by Hecke [5], Ostrowski and others. 

A Dirichlet series typically converges In a half-plane Re(s) > a0. The first step in retrieving 
the information contained In It Is to study Its possible analytic continuation. Even its existence is 
not usually something that can be deduced Immediately from the form of the coefficients, however 
simple their algebraic or analytic nature may be. For Instance, as Is well known, g(s) extends 
meromorphically to the whole complex plane, with only a simple pole at s = 1. In addition, it has 
an important symmetry around Re(s) = 1/2, in the form of a functional equation, a hallmark of 
many arithmetical Dirichlet series. It has "trivial" zeros at - 2 , - 4 , - 6 , . . . , and its values at the 
negative odd Integers are rational, essentially given by the Bernoulli numbers. 

The Diophantine series described above also extend to meromorphic functions on C, but 
there Is no reason to expect a symmetric functional equation. Indeed their poles form the half of a 
lattice in the left half-plane. Other series, more fancifully defined, are likely not to extend at all. 
For instance, it is known that Y>p~~\ where p runs over the primes, cannot extend beyond any 
point on the imaginary axis, even though It Is formed from terms of T^=\n~s (Chandrasekharan's 
book [1] Is a nice Introduction to these arithmetical connections, whereas Hardy and RIeszss book 
[4] Is a good source for the more analytical aspects of the general theory of Dirichlet series). 

The function <p(s) we study In this paper, defined by the Dirichlet series HF~S, where F„ is 
the w* Fibonacci number, shares properties with both types mentioned above. We will show that 
It extends to a meromorphic function on all of C and that It has, like the Riemann zeta function, 
"trivial111 zeros at -2, - 6, -10,.. . . However, it has trivial simple poles at 0, - 4, - 8,.... Again like 
C(s), we show that at the odd negative Integers Its values are rational numbers, in this case 
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naturally expressible by Fibonacci and Lucas numbers. In addition, we derive arithmetical expres-
sions for the values of <p(s) at positive integers. 

On the other hand, we also show that tp($) is analytically similar to the Diophantine series 
with the golden ratio as the irrational number 0. Indeed p(s) has the same "half-lattice" of poles. 
More recently, Grabner and Prodinger [2] describe a "Fibonacci" stochastic process in which 
there arise analytic continuations sharing yet again this kind of pole structure, thus adding a third 
interesting context in which similar analytic behavior arises. This can be explained by a formal 
similarity in the calculations in each case, but it would be interesting to study further if there are 
deeper connections between them. 

2* FIRST STEPS 
The Fibonacci numbers grow exponentially, and, in general, if a > 1 and vn are integers with 

vn > an, then for a = Re s > 0 we have the estimate 

I \y-„' i * I v? £ £ «_OT =(«CT - ir'• 
n=\ n—l n=l 

Hence, the Dirichlet series Z^=1 v~s defines an analytic function f(s) for a > 0, and furthermore, 

IsfWllsKa'-lT^ilogar^ + Oia) 

as a -> 0+, so that sf(s) is bounded in every angular sector with vertex at 0 opening into the half-
plane Res>0. 

Applying this to the Fibonacci numbers Fn, we get an analytic function <p{s) defined for a = 
Re 5 > 0 by the Dirichlet series Z^Li F~s. It is interesting to express this as a Mellin transform in 
the classical manner (see Ch. 4 of [4], for example). This is accomplished by the counting function 
#(x) =#{n>l:Fn <x}, which counts the number of Fibonacci numbers less than or equal to x, 
where we start with i*J and count Fl = F2 = l twice. Equivalently, #(x) = max{/i > 0: Fn <x) 
(but this is not the same as starting from F0 = 0 and counting distinct Fn). Then 

<p{s) = s\ ®(x)x~s~ldx. 

Note that #(x) = 0 for 0 < x < 1, so the integral actually starts at x = 1. 
Let N(x) = [log^ xV5], where log^ means the logarithm in base <p and [x] is the integer part 

of x. Then it is not hard to see that <l?(x) = N(x) + S(x), where S(x) = 0,1,-1 and, in fact, 
8{x) = 1 if and only if x is in an interval of the form [F2n, <p2n IV5), n > 1, and £(x) = -1 if and 
only if x is in an interval of the form [<p2n+l IV5, F2n+l). Let E c [1, oo) be the union of these 
intervals. Then m(E) < oo, where m is Lebesgue measure, and thus we have 

<p{s) = s U M ^ i \c-s-ldx + s\ES(x)x-s-ldx. (1) 

The first integral may be calculated explicitly, and defines a meromorphic function on the whole 
complex plane. The second integral converges at least for a > - 1 , since for such a, 

I \x~s-l\dx = J x~a-ldx <m(E) < oo. 
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In fact, we do not need to calculate the first integral once we realize that approximating O by N is 
equivalent to approximating Fn by <pn I-J5 in the Dirichlet series. Indeed, 

><p2niS Aw=zii"-*-+r dxT 
n=l 

= 5X ' +̂ 2 
n=l 

20+1 ' V 5 j ^V5 

^ ^ ( 5 ) - l - 5 - s / 2 - ^ 
-25 

\-9-
for a > 0. Thus, 

p(*) = A(s) + l+-? 
tf-V 

where c = log^(V5) - 1 . This is an analytic continuation of <p($) to a > - 1 , and we see that <p has 
a simple pole at s = 0 with residue 1 / log <p. In fact, the series expression 

A(*)=ixj-(p"/V5n 
71=2 

converges for a > - 2 , since by the mean value theorem, 

0rv5 

Note also that A(^)->1 as |s|—> oo and s lies in an angular sector at 0 opening onto Re5>0. 
This is consistent with <p(s) -> 2 as |5|—> oo in this manner. 

Now we proceed to determine the analytic continuation of <p(s) to a meromorphic function 
on C, and determine its poles. From this we will see the reason for this first "jump" from a = 0 
too-= - 2 . 

3. ANALYTIC CONTINUATION 

Proposition 1: The Dirichlet series T^=lF~s can be continued analytically to a meromorphic 
function <p(s) on C whose singularities are simple poles at s - -2k + *l^*®9 k > 0, n e Z, with 
residue (-1)^55/2(7)/log(^> 

Proof: We obtain the full analytic continuation of <p(s) by refining the approximation to Fn 

to a full binomial series 

i^=| i^y=5~p/v1 i -
f .V>V 
SL 

<P 

: s-^v'f l-Hr^T=5_p/2Eo(f) H)(" +iykmn(p~2k\ 

(2) 
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This expansion is valid for any p GC and principal powers since then (xy)p = xpyp for x,y > 0, 
and the binomial series converges since q>>\. Substituting this into the Dirichlet series for <p(s), 
we get 

<p(s) = I F - = 5 s / 2 i I r / k-r/<"+v1 -n(2+lk) (3) 
M=l «=1 fc=0V 

The double series (3) is absolutely convergent for a > 0, for we have the estimate 

(s)(-s-l)---(-s-k + l) 
k\ 

\s\(\s\ + l)...(\s\+k-l) 

and then 

I 
«>1, k>0 

ZS\-.lf(ri+l)m-n(s+2k) * I (-V 
n>L k>0 

"Y-'Mt, 
k( -\S\) -n(*+2k) 

(4) 

= £ <pn<J(l - <p~2ny^ < (1 - ^ " 2 ) H , , £ ^ < oo„ 

Interchanging the order of summation, we get, since \(p~{s+2k>)\ = ^~(or+2^ < 1 for a > 0, £ > 0, 
OO / \ CO 

rt*)=s^ZfI5 (-!)'!((-i)>-(s+2A))" 
k=0\ J n=l 

&UJ(_1) I - ( - D V - ^ (5) 

. &UV"+H)*+I" 
This series converges uniformly and absolutely on compact subsets of C not containing any of the 
poles of the functions 

r-s\ 1 /*(*) = k J (ps+u+(-!)' k+i> 

which are at the points s = -2k + xi^k) for k > 0 and n e Z. Thus, they lie on the lines cr = -2k 
spaced at intervals of -^; s = -2k is a pole when k is even, and s = -2k +-^ is a pole when k is 
odd. Here we see the reason for our initial jump from a - 0 to a = -2 . For any s e C, we have 
|̂ *+2* +(_i)*+i| > p<"2* _ x > 9^k for £ > 0 . h e n C 6 ) 

k>k0 4=0 
I IA(5)|<^SH)M £lkrk=p-*0-p-1r,'l<«> 

for ^ 0 » 0 , and this bound is uniform when 5 varies in a compact set. Hence, (5) defines the 
analytic continuation of <p(s) to a meromorphic function on C with simple poles at s^ = -2k + 
^(2ri+k\ k>Q,nGZ. The residue at s^ is easily seen to be 
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9Ji( O (-l)k9*l2(~sf\ 
±±J = V * J D (6) 

®-(0
s+™ +(- tf+r\ log(<p) 

4 VALUES AT NEGATIVE INTEGERS 

Next, we discuss the values of <p(s) at the negative integers. We already know that 0, - 4 , 
-8 , . . . are simple poles. 

Proposition 2: <p($) has "trivial" zeros at —m, where m > 0, m = 2 mod 4, and the values at other 
negative integers are rational numbers, which can be expressed in terms of Fibonacci and Lucas 
numbers. 

Proof: Let m > 0 be an integer not a multiple of 4. By (5), 
fm\ L 

(p-m+2k+^k+l--

and since m e Z+, all terms with k >m are 0, so that this is really a finite sum belonging to 
Q(V5). Let ak = (JX?""*2* +(-l)"+1)"1 and ak = ak+am_k, so that ak = a m ^ and 

with 
z >t=o 

m-L 

fc=0 
if w is odd. We compute 

(m) 1 , ( m ) 1 
« t = 

witf 1 +_ 1 
m+k+\ k){<p2k-m + (-\)k+1 (-l)m^2*-m) + (-1) 

i\{ I + un 1 
* \<p2k-m+(-i)fc+1 <p*<-2k-"»+(-i)fc+1 y 

so that a*k -ak\im is even, and a*h - -ak if m is odd, where a* denotes the Galois conjugate in 
Q(V5). Thus, if m is even, we have a t e Q for all k, and since also 5~m/2 e Q , we see that 
#>(-7w) e Q in this case. If m is odd, then ak if of the form ak4l, where ak e Q, as is also S"™'2, 
so that again <p(-ni) e Q. We get further information by carrying through the computation of ak: 

^ (m\ {-\)m<p2k-m + (-l)m+k+i + ̂ 2*-m> + (-1)A+1 

"fc U J {<P<p*Yk-m + (-l)k+l(q>2k-m + <p*(2k -m) + i) 
(7) 

= H( n ^ i (-^)2t"m+^(2fc"ffl)+(-i)*+1(i+(-i)ffl) 
W l J <p2k-m+<p*2k-mH(-if+1(i+(-i)m) ' 
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If m = 2 mod 4, then this simplifies to ak = (/t)(-l)*+l, and then 

^(-w) = l r ^ | ; ^ ( - l ) * + 1 = 0 ( in^0 even). (8) 

These may be considered the "trivial" zeros of <p($). 
Ifm is odd, then 

92k-m+ *(2k-m) «. = (7)H>* 
\k+l ^m~2k 

Aw-2£ 

where Ln = (p" + q>*n is the Lucas sequence 2,1,3,4,7,..., and both F„ and Ln are extended to all 
n e Z, so that i^ , = (-1)"+1F„ and L_„ = (-1)"4; hence, JF„ IL_„ = -J? /Z„ for all n * 0. Then 

^ ( -^ ) = 7 ( ^ Z f T ) ( - l ) i + 1 ^ (/»>lodd). D (9) 

All that has been done for the Dirichlet series T^=iF~s may be carried out in an entirely anal-
ogous manner for Z*=i(-1),,/^"J. Carrying out the corresponding calculations, which amounts to 
chasing sign changes in the previous ones, yields the following result. 

Theorem 1: The Dirichlet series Y%=i(-l)nF~s can be analytically continued to a meromorphic 
function y/(s) on C by the series 

The singularities of y/(s) are simple poles at 

with residue 

„y m(2n + k + l) , ^. -. 
S = -2& +—^- - , &>0, weZ, 

log<z? 

( - l / y / 2 ^ j / l o g ( ^ ) . 

These are "complementary" to the poles of <p($). Thus, -m is a simple pole for integers m > 0, 
wis2 mod 4. Similarly, ^(s) has trivial zeros at -m, where w>0 , wi = 0 mod 4 (note that 
y/(0)=-l/2). Finally, 

<K-»0 - 9(-m) = r ^ ' l f A - l ) * 

for m > 0, #i = 1 mod 2. 

In particular, \{q>{s)-<p{s)) analytically continues the series Z^Lo^+i t 0 a function with 
simple poles at 

s = -2k+-^~> k>0, neZ, 
log^ 

\k+lZMz2L 
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hence, at all even negative integers. The odd negative integers are trivial zeros of this function. 
Similarly, j(<p(s)-tp($y) analytically continues the series E ^ i ^ " 5 to a function with the same 
singularities, and rational values at the odd negative integers. 

5. VALUES AT POSITIVE INTEGERS 

Theorem 2: For W G N , <p(m)-5m/2E/licfl>~\ where the coefficients ct are combinations of 
sums of powers of divisors of/. In particular, we have the formulas 

<p(2) = 5 X (-l^Wt/fc)?-', 
/=0mod2 

^(3)=^X(^(o-^(o+(-i)K<o-^(o))^ 8 
25 

/=i 

° fe2mod4 

(ii) 

+ 25 I 
/s0mod4 

^m)+w^ia3m <p 

where df (w) - Td]rl,«(4) </*, 4 = 4 <**(*) = 5^,»dk, [/]2 - 2OTd^> is the 2-part of /, and [/£ is 
the part of / prime to 2. 

Proof: Starting from (2) and 

we have, for m e N, (-u'r-n-1 

j7-iii _ 5^/2 y f W + k - A / ^kn -n(m+2k) 
k=o\ ' 

Let d = m + 2k, which ranges over Sm = {d>m:d^m mod 2}, so 

F-m = 5n,,2 £ - T - ^.jy^y*^ 
deSm\ 

LQtS^ = {d>m:s = m mod 4} and Sm = {d>m:s = m + 2 mod 4}. Then 

-m __ cml2 
d+m-2 

&w-irH-tr£.w-& deS~ 

d+m-2 
-nd 

To sum over w, we will collect like powers l = ndx so that / runs over all natural numbers and we 
restrict to d | /, obtaining 

n=l 1=1 ̂ M e ^ V T 1 V d\l,deS~ 

fd+m-2\\ 

U-Or (12) 
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Similarly, we may sum over subsets S of the natural numbers, letting / run over multiples of Sm by 
n G S. For example, if m is odd, then the divisors d GSm are odd, so if we wish to sum over odd 
n, then we let / run over odd numbers. If we wish to sum over even n, then / runs over even 
numbers. If m is even, then the divisors d eSm are even, so / runs over even numbers. In the 
case m = 1, we have ^ = {d > 1, d = 1 mod 4} and S{ = {d > 1, d s 3 mod 4}. The binomial coef-
ficients reduce to 1. Noting that 2^d=i(4 )(-l) l /d = {-V)ldt(l)y this gives us the formulas: 

(13) 
1 ^ 1 = ̂ 5 X to©-^©)^1; 
w=0 /=lmod2 

n-\ / s0mod2 

Horadam [6] treats other approaches to these and other sums of reciprocals {s-1) of quadratic 
recurrence sequences involving elliptic functions (see Proposition 3 below). 

In general, , 

is a polynomial in x of degree m - 1 , divisible by x if #i is even. Write 

^00 = !«**/", 
where a^ e Q. Then »̂(/w) = 5m/2 E£, c$> ', where 

* 
{.d\l,deS+ k\l,de!% ) 

(14) 

This observation proves the theorem. D 

To get the specific formulas for fixed /, m, let sklm denote the expression in parentheses. 
Note that, for odd m, we have sums over divisor classes d= 1, 3 mod 4, so the signs do not 
bother us: 

m-l 

'lLakm\ 
k=0 

( \ 

and the greater difficulty is the size restriction on divisors, d > m. For even m, the signs are more 
of a nuisance. The classes S*, S~ are of divisors d = 0,2 mod 4. We are summing over even /, 
and we write / = 2rX with r > 1 and X odd. Then the divisors d\l with d = 2 mod 4 are of the 
form d-28 with J|>1. Thus, forgetting for the moment about the restrictions on the size of d, 
we note that Z^ds2moi4dk = 2kak(Z) and Xdll,ds2mod4(-l)"ddk = {-\)in2kuk{X), since lld = 
XI8 is odd or even according to whether X = 111 is odd or even. 
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The divisors d\l with d = 0 mod 4 are nonexistent if r = 1; otherwise, they are of the form 
d = 2PS, with 2 < p < r and J | l . Thus, 

2 ^ZE(2^^ 2 7f^w 
rfM=2mod4 5|.l p=2 Z - 1 

and 
\2r'^ 2 (-iy^=2Z(2^(-i)2 

rf|/,d=2mod4 8\X p=2 

S\X 5\X p=2 

Putting it all together, we obtain the formulas 
fo& 

Sklm ~ i 

2*^)- 5>\ 7^2 (4), 
c?s=2 mod 4 

d<m 

(2k-2u)ak(A)- £ < / * - Y,(-V>llddk, / - 0 ( 4 ) , 
«/|Z d|Z 

d=2 mod 4 cN2 mod 4 
d<m d<m 

if m = 2 mod 4, and 

\-2kak(X)+ £</*, 

%w ~ ^ 

7^2 (4), 
<i=2 mod 4 

d<m 

nk(r+l) _n2k 
2kcrk(A) + 2

 k
 2 a t (A)- £ < / * - £«/*, 7^0 (4), 

Z A </|Z d\l 
d=2 mod 4 d=2 mod 4 

d<m d<m 

if m = 0 mod 4, from which we get the formulas in the theorem. 
A curious result may be derived from these formulas in the case m-\ which is probably the 

subject of Landau's centenary paper [7], to which, unfortunately, the author did not have access. 
Let &(z) = Zwez e™nlz denote Jacobi's theta function. We write also ®(q) = S„e Z qnl, for q = e™ 
with Im z>0 . Then, 

Proposition 3: The following formula holds for S = -^: 

-!_V5 S ^1 = 
rm\ mod 2 

0 0 (15) 

Proof: Note that q = <p~l for z = -l/S (S is the minimum difference of the poles of q>(s) 
along the vertical lines a - -2k). We have &(q)2 = H*Ur2{l)ql, where r2(/) is the number of 
representations of/ as a sum of two integer squares. Since r2(l) = 4(^(7) -d3(l)), we have shown 

«s lmod2 /=lmod2 

and the formula follows from noting that r2(2l) = r2(l) since dt(2l) = dl(l)9 hence 
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e(?2)2=Ir2(/)^ = Xr2(2/)^ 
1=0 1=0 

and so 

Z r2{i)ql = ®{qf-®{q1)2. • 
1=1 mod 2 

6. DIOPHANTINE APPROXIMATION 

The "Fibonacci zeta function" tp(s} has much in common with the meromorphic function 
obtained by analytic continuation of the Dirichlet series 

/ C ^ E ^ i ^ (where {x} is the 
fractional part of x) studied by (among others) Hecke in [5] and Hardy and Littlewood in [3] and 
related papers. Indeed, they show that this function has the same singularities as <p(s), namely, 
simple poles at -2k + ( j ^ ^ . They work with any reduced quadratic irrational a , and it is easily 
seen that we have analogous results in that case also. In particular, f(s) and <p(s) differ by an 
entire function. The function <p(s) is not in those papers, which have in mind the study of the 
distribution of the fractional parts {no] (see also Lang [8]). Hecke mentions that lLn^sn"s also 
has an analytic continuation when S is the set of positive integers satisfying {no} < s for a given 
£>0. Note that F2n+l eS except for finitely many n, but by Weyl's equidistribution theorem 
there are infinitely more numbers in S, making these continued functions have an additional pole at 
5 = 1. Comparing (5) with formulas in [5] and [3], we find similar summands multiplied by zeta-
like functions. It would be interesting to obtain more qualitative information. Further questions 
about (p(s) might involve finding nontrivial zeros and studying their distribution, and more prop-
erties of the values <p(m) at integers m. 

REFERENCES 

1. K. Chandrasekharan. Introduction to Analytic Number Theory. New York: Springer-Verlag, 
1968. 

2. P. J. Grabner & H. Prodinger. "The Fibonacci Killer." The Fibonacci Quarterly 32.5 (1994): 
389-94. 

3. G. H. Hardy & J. E. Littlewood. "Some Problems of Diophantine Approximation: The Ana-
lytic Character of the Sum of a Dirichlet's Series Considered by Hecke." Abhandlungen 
Mathematische Seminar Hamburg'3 (1923):57-68. 

4. G. H. Hardy & M. Riesz. The General Theory of Dirichlet's Series. Cambridge: Cambridge 
University Press, 1915. 

5. H. Hecke. "tFber analytische Funktionen und die Verteilung vonZahlenmod eins." Abhand-
lung Mathematische Seminar Hamburg 1 (1921):54-76. 

6. A. F. Horadam. "Elliptic Functions and Lambert Series in the Summation of Reciprocals in 
Certain Recurrence-Generated Sequences." The Fibonacci Quarterly 26.2 (1988):98-114. 

7. E. Landau. "Sur la sefie des inverses des nombres de Fibonacci." Bulletin de la Societe 
Mathematique de France 27 (1899):298-300. 

8. S.Lang. Introduction to Diophantine Approximations. New York: Springer-Verlag, 1995. 
AMS Classification Numbers: 30B50, 30B40, 11B39 

418 [NOV. 


